论文标题
使用单一和测量通道对量子计算进行现实模拟
Realistic simulation of quantum computation using unitary and measurement channels
论文作者
论文摘要
量子算法的实施和实用性高度取决于量子处理器内的操作质量。因此,量子计算模拟平台中包括现实的错误模型对于测试这些算法至关重要。量子信息处理设备的现有经典仿真技术在可扩展性(可以模拟的量子数)和准确性(模拟与目标误差模型的近距离之间)之间的权衡。在本文中,我们引入了一种新的模拟方法,该方法依赖于纯粹的态仿真环境中的单一和测量通道的随机总和近似密度矩阵演变。与最知名的随机方法相比,该模型在准确性方面至少提高了一个数量级,同时与精确的密度矩阵模拟相比,可以模拟大量Qubits。此外,我们使用这种方法实际模拟了Grover的算法和表面代码17,使用GATE SET层析成像表征将量子操作作为噪声模型。
The implementation and practicality of quantum algorithms highly hinge on the quality of operations within a quantum processor. Therefore, including realistic error models in quantum computing simulation platforms is crucial for testing these algorithms. Existing classical simulation techniques of quantum information processing devices exhibit a trade-off between scalability (number of qubits that can be simulated) and accuracy (how close the simulation is to the target error model). In this paper, we introduce a new simulation approach that relies on approximating the density matrix evolution by a stochastic sum of unitary and measurement channels within a pure state simulation environment. This model shows an improvement of at least one order of magnitude in terms of accuracy compared to the best known stochastic approaches while allowing to simulate a larger number of qubits compared to the exact density matrix simulation. Furthermore, we used this approach to realistically simulate the Grover's algorithm and the surface code 17 using gate set tomography characterization of quantum operations as a noise model.