论文标题

在$ t $ - 核和自变轭$(2T-1)$ - 算术进度中的核心分区

On $t$-core and self-conjugate $(2t-1)$-core partitions in arithmetic progressions

论文作者

Bringmann, Kathrin, Kane, Ben, Males, Joshua

论文摘要

我们将Ono和Raji的最新结果扩展到了Hurwitz的班级编号,将自变$ 7 $的分区的数量联系起来。此外,我们给出了一个好奇的平等的组合解释$ 2 \ permatatorName {sc} _7(8n+1)= \ operatatorName {c} _4(7n+2)$。我们还猜想,这种形状的平等性在且仅当$ t = 4 $时,证明了$ t \ in \ {2,3,5 \} $,并以$ t> 5 $给出部分结果。

We extend recent results of Ono and Raji, relating the number of self-conjugate $7$-core partitions to Hurwitz class numbers. Furthermore, we give a combinatorial explanation for the curious equality $2\operatorname{sc}_7(8n+1) = \operatorname{c}_4(7n+2)$. We also conjecture that an equality of this shape holds if and only if $t=4$, proving the cases $t\in\{2,3,5\}$ and giving partial results for $t>5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源