论文标题
估计独立性作为量子不确定性的公理
Estimation independence as an axiom for quantum uncertainty
论文作者
论文摘要
量子不确定性是量子力学的基石,它是许多违反直觉非古典现象的基础。最近的研究明显地表明,它也从根本上限制了非经典相关性,至关重要的是,与其确切形式的偏差可能导致违反第二种热力学定律。是否有唯一决定其形式的深层自然原则?在这里,我们在一系列非古典理论的一般认知框架中工作,将认知限制引入了原本经典的理论,因此位置的分布被基本动量领域不可约束参数。最近显示,量子力学的数学正式出现在操作方案中,其中代理对位置和实验设置的动量进行了特定的估计。此外,量子不确定性可以追溯到估计器的“特定”选择和相关的估计误差。在目前的工作中,我们表明了一个合理的估计独立性原理,该原理要求一个系统的动量估计必须独立于第一个独立准备的另一个系统的位置,单身估计器的特定形式,尤其是估计误差,尤其是由Planck常数的全球无需随机变量给出的估计误差。
Quantum uncertainty is the cornerstone of quantum mechanics which underlies many counterintuitive nonclassical phenomena. Recent studies remarkably showed that it also fundamentally limits nonclassical correlation, and crucially, a deviation from its exact form may lead to a violation of the second law of thermodynamics. Are there deep and natural principles which uniquely determines its form? Here we work within a general epistemic framework for a class of nonclassical theories, introducing an epistemic restriction to an otherwise classical theory, so that the distributions of positions are irreducibly parameterized by the underlying momentum fields. It was recently shown that the mathematics of quantum mechanics formally arises within an operational scheme, wherein an agent makes a specific estimation of the momentum given information on the positions and the experimental settings. Moreover, quantum uncertainty can be traced back to the `specific' choice of estimator and the associated estimation error. In the present work, we show that a plausible principle of estimation independence, which requires that the estimation of momentum of one system must be independent of the position of another system independently prepared of the first, singles out the specific forms of the estimator, and especially the estimation error up to its strength given by a global-nonseparable random variable on the order of Planck constant.