论文标题
高峰值电流密度为1T-TAS $ _2 $/2H-mos $ _2 $ t-juntion
Gate- and Light-Tunable Negative Differential Resistance with High Peak Current Density in 1T-TaS$_2$/2H-MoS$_2$ T-Junction
论文作者
论文摘要
基于金属的电子产品对快速和辐射硬质电子电路具有吸引力,并且仍然是研究人员的长期目标之一。 1T-TAS $ _2 $的出现是一种分层材料,表现出强电荷密度波(CDW)驱动的电阻率开关,可以通过外部刺激(例如电场和光脉冲)控制,引发了对金属电动机的重新兴趣。在这里,我们使用电动驱动的CDW相变的负差分电阻(NDR)在由1T-TAS $ _2 $/2H-MOS $ _2 $ van der waals HeteroStructure组成的不对称设计的T型结中进行。该设备的运行原理受多数载体运输的约束,与使用载体隧道的常规NDR设备不同,因此避免了范德华异质枢纽中较弱的隧穿效率的瓶颈。因此,我们达到的峰值电流密度超过$ 10^5 $ na $ na $ $ m $ m $^{ - 2} $,这比在基于典型的基于NDR的NDR实现中获得的数量级大约高两个数量级。峰值电流密度可以通过外部门电压和照相有效地调节。该设备在一个多月的时间内对氛围引起的降解和多次测量中的特征重复进行了鲁棒性。这些发现对于实施活跃的金属功能电路很有吸引力。
Metal-based electronics is attractive for fast and radiation-hard electronic circuits and remains one of the longstanding goals for researchers. The emergence of 1T-TaS$_2$, a layered material exhibiting strong charge density wave (CDW) driven resistivity switching that can be controlled by an external stimulus such as electric field and optical pulses, has triggered a renewed interest in metal-electronics. Here we demonstrate a negative differential resistor (NDR) using electrically driven CDW phase transition in an asymmetrically designed T-junction made up of 1T-TaS$_2$/2H-MoS$_2$ van der Waals heterostructure. The principle of operation of the proposed device is governed by majority carrier transport and is distinct from usual NDR devices employing tunneling of carriers, thus avoids the bottleneck of weak tunneling efficiency in van der Waals heterojunctions. Consequently, we achieve a peak current density in excess of $10^5$ nA$μ$m$^{-2}$, which is about two orders of magnitude higher than that obtained in typical layered material based NDR implementations. The peak current density can be effectively tuned by an external gate voltage as well as photo-gating. The device is robust against ambiance-induced degradation and the characteristics repeat in multiple measurements over a period of more than a month. The findings are attractive for the implementation of active metal-based functional circuits.