论文标题

使用Verifai的基于神经网络的飞机滑行系统的正式分析和重新设计

Formal Analysis and Redesign of a Neural Network-Based Aircraft Taxiing System with VerifAI

论文作者

Fremont, Daniel J., Chiu, Johnathan, Margineantu, Dragos D., Osipychev, Denis, Seshia, Sanjit A.

论文摘要

我们展示了使用Verifai工具包进行严格设计安全至关重要系统的统一方法,以正式分析基于AI的系统。 Verifai为跨越设计过程的任务提供了一个集成的工具链,包括建模,伪造,调试和ML组件再培训。我们在一项工业案例研究中评估了所有这些应用程序,该案例研究是由波音公司开发的实验性自动驾驶飞机滑行系统,该系统使用神经网络跟踪跑道的中心线。我们使用风景秀丽的概率编程语言来定义跑道方案,并使用它们在X平面飞行模拟器中驱动测试。我们首先执行伪造,自动找到环境条件,从而通过显着偏离中心线(甚至完全离开跑道)来违反其规范。接下来,我们使用反例分析来识别不同的故障情况,并通过专门测试确认其根本原因。最后,我们使用伪造和调试的结果来重新培训网络,消除了几个故障案例并改善了闭环系统的整体性能。

We demonstrate a unified approach to rigorous design of safety-critical autonomous systems using the VerifAI toolkit for formal analysis of AI-based systems. VerifAI provides an integrated toolchain for tasks spanning the design process, including modeling, falsification, debugging, and ML component retraining. We evaluate all of these applications in an industrial case study on an experimental autonomous aircraft taxiing system developed by Boeing, which uses a neural network to track the centerline of a runway. We define runway scenarios using the Scenic probabilistic programming language, and use them to drive tests in the X-Plane flight simulator. We first perform falsification, automatically finding environment conditions causing the system to violate its specification by deviating significantly from the centerline (or even leaving the runway entirely). Next, we use counterexample analysis to identify distinct failure cases, and confirm their root causes with specialized testing. Finally, we use the results of falsification and debugging to retrain the network, eliminating several failure cases and improving the overall performance of the closed-loop system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源