论文标题
1循环的6d(2,0)和M理论
6d (2,0) and M-theory at 1-loop
论文作者
论文摘要
我们在6D最大超对称$(2,0)$ $ $ a_ {n-1} $和$ d_n $理论中研究应力张量张量的多重四点功能,它们没有拉格朗日的描述,但在大$ n $中,全息限制是全息二的,在$ AD $ AD $ ads_7 \ timess_7 \ timess_7 \ timess_7 \ timess_4 \ timess^4 $和$ s^4/\ mathbb {z} _2 $。我们使用分析性引导程序来计算来自具有超级格拉德$ r $的Witten图和第一个高导数校正$ R^4 $顶点的全息图相关器的1循环校正,这是针对非lagrangian理论计算的第一个1循环校正。然后,我们采取平坦的空间限制,并找到与11D M理论S-Matrix中相应项的精确一致性,我们首次使用两粒子单位性剪切来计算其中一些。
We study the stress tensor multiplet four-point function in the 6d maximally supersymmetric $(2,0)$ $A_{N-1}$ and $D_N$ theories, which have no Lagrangian description, but in the large $N$ limit are holographically dual to weakly coupled M-theory on $AdS_7\times S^4$ and $AdS_7\times S^4/\mathbb{Z}_2$, respectively. We use the analytic bootstrap to compute the 1-loop correction to this holographic correlator coming from Witten diagrams with supergravity $R$ and the first higher derivative correction $R^4$ vertices, which is the first 1-loop correction computed for a non-Lagrangian theory. We then take the flat space limit and find precise agreement with the corresponding terms in the 11d M-theory S-matrix, some of which we compute for the first time using two-particle unitarity cuts.