论文标题

使用随机光谱嵌入的贝叶斯模型反演

Bayesian model inversion using stochastic spectral embedding

论文作者

Wagner, P. -R., Marelli, S., Sudret, B.

论文摘要

在本文中,我们提出了一种新的无抽样方法来解决贝叶斯模型倒置问题,这是先前提出的光谱可能性扩展(SLE)方法的扩展。我们的方法称为随机光谱可能性嵌入(SSLE),使用了最近呈现的随机光谱嵌入(SSE)方法来局部光谱膨胀的细化,以近似贝叶斯倒置问题核心的可能性功能。我们表明,与SLE相似,这种方法通过直接对扩展系数进行后处理,从而导致贝叶斯后验分布的关键统计数据的分析表达式。由于SSLE和SSE依赖于似然函数的直接近似,因此它们与正向模型的计算/数学复杂性无关。我们通过引入特定于可能性的自适应样品富集方案来进一步提高SSLE的效率。为了展示所提出的SSLE的性能,我们解决了三个在似然函数中表现出不同复杂性的问题:多模式,高后置浓度和高标称维度。我们演示了SSLE如何在SLE上显着改善,并将其作为现有反演框架的有希望的替代方案。

In this paper we propose a new sampling-free approach to solve Bayesian model inversion problems that is an extension of the previously proposed spectral likelihood expansions (SLE) method. Our approach, called stochastic spectral likelihood embedding (SSLE), uses the recently presented stochastic spectral embedding (SSE) method for local spectral expansion refinement to approximate the likelihood function at the core of Bayesian inversion problems. We show that, similar to SLE, this approach results in analytical expressions for key statistics of the Bayesian posterior distribution, such as evidence, posterior moments and posterior marginals, by direct post-processing of the expansion coefficients. Because SSLE and SSE rely on the direct approximation of the likelihood function, they are in a way independent of the computational/mathematical complexity of the forward model. We further enhance the efficiency of SSLE by introducing a likelihood specific adaptive sample enrichment scheme. To showcase the performance of the proposed SSLE, we solve three problems that exhibit different kinds of complexity in the likelihood function: multimodality, high posterior concentration and high nominal dimensionality. We demonstrate how SSLE significantly improves on SLE, and present it as a promising alternative to existing inversion frameworks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源