论文标题

基础激发能量收集的性能极限,并与实验进行比较

Performance limit for base-excited energy harvesting, and comparison with experiments

论文作者

Tiwari, Sankalp, Vyasarayani, C. P., Chatterjee, Anindya

论文摘要

我们考虑从振动台上的能量收集设备中的理论最大提取平均功率,该功率提供了单向位移$ a \ sin(ωt)$。设备中移动组件的总质量为$ M $。该设备在尺寸$ L $的容器中组装,限制了内部组件的位移和变形。设备中的质量可能以任意方式互连。最大可提取的平均功率由$ \ frac {mlaΩ^3}π$界定,对于1、2或3维的运动;以直线和旋转运动为特殊情况;并具有单一或多个自由度。移动质量提取最大功率的限制位移曲线是不连续的,并且在物理上不可实现。但是平滑的近似值几乎可以一样好:在傅立叶近似中,$ 15 $项,上限为$ 99 $ \%的理论最大值。纯正弦溶液仅限于$ \fracπ{4} $乘以理论最大值。对于单个自由度线性谐振设备和非谐振旋转设备,能量提取模拟线性扭转阻尼器,最大平均功率输出为$ \ frac {mlaΩ^3} {4} $。发现文献中的36个实验能量收集设备可提取从$ 0.0036 $ \%到理论最大值的$ 29 $ \%不等的功率。在这36个中,有20个成绩少于2 \%,而三个成绩超过20 \%。我们建议,作为优点的数字,可以将能量提取高于$ \ frac {0.2mlaΩ^3}π$可能被认为是优秀的,而高于$ \ frac {0.3mlaΩ^3}π$的提取可能被认为是具有挑战性的。

We consider the theoretical maximum extractable average power from an energy harvesting device attached to a vibrating table which provides a unidirectional displacement $A\sin(ωt)$. The total mass of moving components in the device is $m$. The device is assembled in a container of dimension $L$, limiting the displacements and deformations of components within. The masses in the device may be interconnected in arbitrary ways. The maximum extractable average power is bounded by $\frac{mLAω^3}π$, for motions in 1, 2, or 3 dimensions; with both rectilinear and rotary motions as special cases; and with either single or multiple degrees of freedom. The limiting displacement profile of the moving masses for extracting maximum power is discontinuous, and not physically realizable. But smooth approximations can be nearly as good: with $15$ terms in a Fourier approximation, the upper limit is $99$\% of the theoretical maximum. Purely sinusoidal solutions are limited to $\fracπ{4}$ times the theoretical maximum. For both single-degree-of-freedom linear resonant devices and nonresonant whirling devices where the energy extraction mimics a linear torsional damper, the maximum average power output is $\frac{mLAω^3}{4}$. Thirty-six experimental energy harvesting devices in the literature are found to extract power amounts ranging from $0.0036$\% to $29$\% of the theoretical maximum. Of these thirty-six, twenty achieve less than 2\% and three achieve more than 20\%. We suggest, as a figure of merit, that energy extraction above $\frac{0.2 mLAω^3}π$ may be considered excellent, and extraction above $\frac{0.3 mLAω^3}π$ may be considered challenging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源