论文标题
恒星形状优化和灵敏度分析的伴随方法
Adjoint methods for stellarator shape optimization and sensitivity analysis
论文作者
论文摘要
具有可接受的限制特性的恒星设计需要优化非凸的高维空间中描述其几何形状的磁场。恒星计划面临的另一个主要挑战是,限制性能对电磁线圈形状的敏感依赖性,因此需要在紧密的公差下构建线圈。在本文中,我们通过应用伴随方法和形状灵敏度分析来解决这些挑战。伴随方法可以有效地计算函数的梯度,该函数取决于方程系统的解决方案,例如线性或非线性PDE。这可以在高维空间和有效的灵敏度分析中基于梯度的优化。我们介绍了伴随方法进行恒星形状优化的第一个应用。我们讨论的第一个示例是基于连续电流电位模型的概括对线圈形状的优化。了解线圈指标对绕组表面扰动的敏感性使我们能够了解启用更简单线圈的配置的特征。接下来,我们考虑漂移运动方程的解决方案。基于Fokker-Planck碰撞算子的自相关特性得出伴随的漂移方程,使我们能够计算新古典量的敏感性对磁场强度扰动的敏感性。最后,我们考虑取决于MHD平衡方程的溶液的函数。我们概括了MHD力运算符的自相关性能,包括旋转变换的扰动和关闭区域以外的电流。这种自相关属性用于开发一种伴随方法,用于计算有关线圈形状或等离子体边界的扰动的此类函数的衍生物。
The design of a stellarator with acceptable confinement properties requires optimization of the magnetic field in the non-convex, high-dimensional spaces describing their geometry. Another major challenge facing the stellarator program is the sensitive dependence of confinement properties on electro-magnetic coil shapes, necessitating the construction of the coils under tight tolerances. In this Thesis, we address these challenges with the application of adjoint methods and shape sensitivity analysis. Adjoint methods enable the efficient computation of the gradient of a function that depends on the solution to a system of equations, such as linear or nonlinear PDEs. This enables gradient-based optimization in high-dimensional spaces and efficient sensitivity analysis. We present the first applications of adjoint methods for stellarator shape optimization. The first example we discuss is the optimization of coil shapes based on the generalization of a continuous current potential model. Understanding the sensitivity of coil metrics to perturbations of the winding surface allows us to understand features of configurations that enable simpler coils. We next consider solutions of the drift-kinetic equation. An adjoint drift-kinetic equation is derived based on the self-adjointness property of the Fokker-Planck collision operator, allowing us to compute the sensitivity of neoclassical quantities to perturbations of the magnetic field strength. Finally, we consider functions that depend on solutions of the MHD equilibrium equations. We generalize the self-adjointness property of the MHD force operator to include perturbations of the rotational transform and the currents outside the confinement region. This self-adjointness property is applied to develop an adjoint method for computing the derivatives of such functions with respect to perturbations of coil shapes or the plasma boundary.