论文标题
在爱因斯坦 - 斯卡尔 - 高斯 - 邦网理论中超紧凑型粒子溶液的特性
Properties of ultra-compact particle-like solutions in Einstein-scalar-Gauss-Bonnet theories
论文作者
论文摘要
除标量化的黑洞和虫洞外,爱因斯坦 - 斯卡尔 - 高斯 - 邦纳特理论还允许粒子样溶液。这些类似粒子的溶液的标量场在起点上有分歧,类似于库仑电位在带电粒子位置的差异。但是,这些类似粒子的溶液具有全球规则度量,其有效应力能量张量也没有病理。我们确定了许多爱因斯坦 - 斯卡尔 - 高斯 - 邦网理论中类似粒子样溶液的存在域,考虑了延伸和幂律耦合函数,我们分析了溶液的物理特性。有趣的是,这些解决方案可能具有一对灯笼,因此代表了超紧凑的物体。我们确定了这些Lightring的位置,并研究了重力波频谱中回波发生的有效潜力。我们还解决了这些类似粒子的溶液与相应的虫洞和黑洞溶液的关系,并阐明了恢复Fisher溶液的限制程序(也称为Janis-Newman-Winicourt-Wyman解决方案)。
Besides scalarized black holes and wormholes, Einstein-scalar-Gauss-Bonnet theories allow also for particle-like solutions. The scalar field of these particle-like solutions diverges at the origin, akin to the divergence of the Coulomb potential at the location of a charged particle. However, these particle-like solutions possess a globally regular metric, and their effective stress energy tensor is free from pathologies, as well. We determine the domain of existence for particle-like solutions in a number of Einstein-scalar-Gauss-Bonnet theories, considering dilatonic and power-law coupling functions, and we analyze the physical properties of the solutions. Interestingly, the solutions may possess pairs of lightrings, and thus represent ultra-compact objects. We determine the location of these lightrings, and study the effective potential for the occurrence of echoes in the gravitational-wave spectrum. We also address the relation of these particle-like solutions to the respective wormhole and black-hole solutions, and clarify the limiting procedure to recover the Fisher solution (also known as Janis-Newman-Winicourt-Wyman solution).