论文标题

使用贝叶斯标准化流量来限制电离历史

Constraining the Reionization History using Bayesian Normalizing Flows

论文作者

Hortúa, Héctor J., Malago, Luigi, Volpi, Riccardo

论文摘要

下一代21厘米调查为宇宙结构形成的早期阶段打开了一个新窗口,并提供了有关电离时代(EOR)的新见解。但是,21 cm信号的非高斯性质以及从这些调查产生的大量数据将需要更高级的技术,能够有效提取必要的信息来限制宇宙的回离历史。在本文中,我们介绍了使用贝叶斯神经网络(BNN)来预测四个天体物理和宇宙学参数的后验分布。除了实现最先进的预测性能外,所提出的方法还提供了对参数不确定性的准确估计,并推断出参数之间的相关性。此外,我们证明了与BNN相结合的标准化流(NF)的优势,能够对更复杂的输出分布进行建模,从而在参数和宇宙学数据集的参数条件密度分布中将关键信息捕获为非高斯。最后,我们提出了在训练后采用归一流流的新型校准方法,以产生可靠的预测,并在计算成本和预测性能方面证明了这种方法的优势。

The next generation 21 cm surveys open a new window onto the early stages of cosmic structure formation and provide new insights about the Epoch of Reionization (EoR). However, the non-Gaussian nature of the 21 cm signal along with the huge amount of data generated from these surveys will require more advanced techniques capable to efficiently extract the necessary information to constrain the Reionization History of the Universe. In this paper we present the use of Bayesian Neural Networks (BNNs) to predict the posterior distribution for four astrophysical and cosmological parameters. Besides achieving state-of-the-art prediction performances, the proposed methods provide accurate estimation of parameters uncertainties and infer correlations among them. Additionally, we demonstrate the advantages of Normalizing Flows (NF) combined with BNNs, being able to model more complex output distributions and thus capture key information as non-Gaussianities in the parameter conditional density distribution for astrophysical and cosmological dataset. Finally, we propose novel calibration methods employing Normalizing Flows after training, to produce reliable predictions, and we demonstrate the advantages of this approach both in terms of computational cost and prediction performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源