论文标题
通过季节性模式学习和优化
Learning and Optimization with Seasonal Patterns
论文作者
论文摘要
多臂匪(MAB)框架中采用的标准假设是,均值奖励是随着时间的流逝恒定的。由于决策者经常面对一个不断发展的环境,在商业世界中,这种假设可能是限制的,而平均奖励是随着时间变化的。在本文中,我们考虑了一个非平稳的mAb模型,其$ k $武器的平均奖励随着时间的推移而定期差异。未知的时期可能会在各种武器上有所不同,并且按比例的长度划分了地平线$ t $。我们提出了一项两阶段的政策,将傅立叶分析与基于信心的学习程序相结合,以学习时期并最大程度地减少遗憾。在第一阶段,该策略正确估计了所有武器的时期,概率很高。在第二阶段,该政策使用第一阶段估计的时期探索了武器的定期平均奖励,并从长远来看利用了最佳臂。我们表明,我们的学习策略引起了遗憾的上限$ \ tilde {o}(\ sqrt {t \ sum_ {k = 1}^k t_k})$,其中$ t_k $是ARM $ K $的时期。此外,我们为任何策略建立了一个通用的下限$ω(\ sqrt {\ sqrt {\ sqrt {t \ max_ {k} \ {t_k \}})$。因此,我们的政策几乎是最佳的,最高为$ \ sqrt {k} $。
A standard assumption adopted in the multi-armed bandit (MAB) framework is that the mean rewards are constant over time. This assumption can be restrictive in the business world as decision-makers often face an evolving environment where the mean rewards are time-varying. In this paper, we consider a non-stationary MAB model with $K$ arms whose mean rewards vary over time in a periodic manner. The unknown periods can be different across arms and scale with the length of the horizon $T$ polynomially. We propose a two-stage policy that combines the Fourier analysis with a confidence-bound-based learning procedure to learn the periods and minimize the regret. In stage one, the policy correctly estimates the periods of all arms with high probability. In stage two, the policy explores the periodic mean rewards of arms using the periods estimated in stage one and exploits the optimal arm in the long run. We show that our learning policy incurs a regret upper bound $\tilde{O}(\sqrt{T\sum_{k=1}^K T_k})$ where $T_k$ is the period of arm $k$. Moreover, we establish a general lower bound $Ω(\sqrt{T\max_{k}\{ T_k\}})$ for any policy. Therefore, our policy is near-optimal up to a factor of $\sqrt{K}$.