论文标题
统一的施泰纳束
Uniform Steiner bundles
论文作者
论文摘要
在这项工作中,我们研究了$ k $ type统一的施泰纳捆绑包,是$ k $分裂度的最低度。我们证明,在$ k = 1 $的情况下,该等级的上限和下限是敏锐的上限,此外,我们为每个允许的等级提供了例子,并解释了家庭之间存在哪些关系。一般而言,在处理案件$ k $之后,我们推测,每一个$ k $ type统一的施泰纳捆绑包都是通过拟议的施工技术获得的。
In this work we study $k$-type uniform Steiner bundles, being $k$ the lowest degree of the splitting. We prove sharp upper and lower bounds for the rank in the case $k=1$ and moreover we give families of examples for every allowed possible rank and explain which relation exists between the families. After dealing with the case $k$ in general, we conjecture that every $k$-type uniform Steiner bundle is obtained through the proposed construction technique.