论文标题

统一的施泰纳束

Uniform Steiner bundles

论文作者

Marchesi, Simone, Miró-Roig, Rosa Maria

论文摘要

在这项工作中,我们研究了$ k $ type统一的施泰纳捆绑包,是$ k $分裂度的最低度。我们证明,在$ k = 1 $的情况下,该等级的上限和下限是敏锐的上限,此外,我们为每个允许的等级提供了例子,并解释了家庭之间存在哪些关系。一般而言,在处理案件$ k $之后,我们推测,每一个$ k $ type统一的施泰纳捆绑包都是通过拟议的施工技术获得的。

In this work we study $k$-type uniform Steiner bundles, being $k$ the lowest degree of the splitting. We prove sharp upper and lower bounds for the rank in the case $k=1$ and moreover we give families of examples for every allowed possible rank and explain which relation exists between the families. After dealing with the case $k$ in general, we conjecture that every $k$-type uniform Steiner bundle is obtained through the proposed construction technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源