论文标题
Frobenius歧管的环状层,Borel-Laplace $(\BoldSymbolα,\BoldSymbolβ)$ - 多晶型和量子微分方程溶液的积分表示
Cyclic stratum of Frobenius manifolds, Borel-Laplace $(\boldsymbolα,\boldsymbolβ)$-multitransforms, and integral representations of solutions of Quantum Differential Equations
论文作者
论文摘要
在本文的第一部分中,我们介绍了Frobenius歧管$ M $的“环状层”的概念。这是扩展歧管$ \ mathbb c^*\ times m $的一组点,该点是单位向量场是由扩展变形连接的平稳性条件定义的异构粒子系统的循环向量。介绍了循环基层补体的几何形状的研究。我们表明,在循环层的点,可以将附加到$ m $的异构粒子系统缩小为标量微分方程,称为$ m $的“主微分方程”。对于来自格罗莫夫(Gromov)理论的Frobenius歧管,即光滑的投射品种的量子共同体,这种构造会再现量子差分方程的概念。 在本文的第二部分中,我们介绍了两个多线性变换,称为“ Borel-Laplace $(\BoldSymbolα,\BoldSymbolβ)$ - 多晶压” - 在Ribenboim正式功率系列的空间上,带有指数和系数的指数和系数,并在任意有限的二级尺寸$ \ Mathbb c $ -alge-alge-alge-albra中。当$ a $专门针对光滑的投影品种的共同体时,Borel-Laplace $(\boldsymbolα,\boldsymbolβ)$的积分形式 - 用于重塑量子Lefschetz定理。这导致了量子微分方程的解决方案的明确梅林 - 巴恩斯集成表示,用于广泛的光滑投射品种,包括射影空间中的Fano完整交集。 在本文的第三部分也是最后一部分中,作为应用程序,我们展示了如何使用前一部分中引入的新分析工具,以研究Hirzebruch表面的量子微分方程。最终,这导致了所有内脑布鲁克表面的Dubrovin猜想的证明。
In the first part of this paper, we introduce the notion of "cyclic stratum" of a Frobenius manifold $M$. This is the set of points of the extended manifold $\mathbb C^*\times M$ at which the unit vector field is a cyclic vector for the isomonodromic system defined by the flatness condition of the extended deformed connection. The study of the geometry of the complement of the cyclic stratum is addressed. We show that at points of the cyclic stratum, the isomonodromic system attached to $M$ can be reduced to a scalar differential equation, called the "master differential equation" of $M$. In the case of Frobenius manifolds coming from Gromov-Witten theory, namely quantum cohomologies of smooth projective varieties, such a construction reproduces the notion of quantum differential equation. In the second part of the paper, we introduce two multilinear transforms, called "Borel-Laplace $(\boldsymbol α,\boldsymbolβ)$-multitransforms", on spaces of Ribenboim formal power series with exponents and coefficients in an arbitrary finite dimensional $\mathbb C$-algebra $A$. When $A$ is specialized to the cohomology of smooth projective varieties, the integral forms of the Borel-Laplace $(\boldsymbol α,\boldsymbolβ)$-multitransforms are used in order to rephrase the Quantum Lefschetz Theorem. This leads to explicit Mellin-Barnes integral representations of solutions of the quantum differential equations for a wide class of smooth projective varieties, including Fano complete intersections in projective spaces. In the third and final part of the paper, as an application, we show how to use the new analytic tools, introduced in the previous parts, in order to study the quantum differential equations of Hirzebruch surfaces. This finally leads to the proof of Dubrovin Conjecture for all Hirzebruch surfaces.