论文标题
希尔伯特(Hilbert)的NEF锥体锥形曲面计划
The Nef cone of the Hilbert scheme of hypersurfaces in the Grassmannian
论文作者
论文摘要
我们表明,当$ d \ geq 3 $和$ m> 2 $时,希尔伯特方案的nef圆锥$ hilb_ {p_ {d,m}(t)}(g(k,k,n))$是由6个类别跨越的锥体$ p_ {d,m}(t)= \ binom {t+m} {m} - \ binom {t+m-d} {m} {m} $。
We show that when $d \geq 3$ and $m>2$, the Nef cone of the Hilbert scheme $Hilb_{P_{d,m}(T)}(G(k,n))$ is a cone spanned by 6 classes in general case, where $P_{d,m}(T)=\binom{T+m}{m}-\binom{T+m-d}{m}$.