论文标题
基于非线性优化的车轮机器人移动机构和惯性测量单元的内部和外部参数的校准
Calibration of the internal and external parameters of wheeled robot mobile chasses and inertial measurement units based on nonlinear optimization
论文作者
论文摘要
移动机器人定位,映射和导航系统通常采用惯性测量单元(IMU)来获得机器人的加速度和角速度。但是,由于校准有缺陷引起的IMU的内部和外部参数中的误差直接影响机器人定位和姿势估计的准确性。尽管该问题已通过可用于IMU的成熟内部参考校准方法解决,但缺乏IMU和移动机器人机箱之间的外部参考校准方法。这项研究通过提出一种基于非线性优化的新型底盘内部和外部参数校准算法来解决此问题,该校准算法是为配备了相机,IMU和车轮速度的机器人而设计的,并在IMU内部参数以及相机内部和外部参数的内部参数的准确校准之前进行了功能。所有内部和外部参考校准都是使用机器人现有设备进行的,而无需额外的校准辅助设备。该方法的可行性通过其应用于Mecanum Wheel全向移动平台的应用来验证,并适用于移动机器人的其他类型底盘。因此,提出了所提出的校准方法,以确保机器人姿势估计的准确性。
Mobile robot positioning, mapping, and navigation systems generally employ an inertial measurement unit (IMU) to obtain the acceleration and angular velocity of the robot. However, errors in the internal and external parameters of an IMU arising from defective calibration directly affect the accuracy of robot positioning and pose estimation. While this issue has been addressed by the mature internal reference calibration methods available for IMUs, external reference calibration methods between the IMU and the chassis of a mobile robot are lacking. This study addresses this issue by proposing a novel chassis-IMU internal and external parameter calibration algorithm based on nonlinear optimization, which is designed for robots equipped with cameras, IMUs, and wheel speed odometers, and functions under the premise of accurate calibrations for the internal parameters of the IMU and the internal and external parameters of the camera. All of the internal and external reference calibrations are conducted using the robot's existing equipment without the need for additional calibration aids. The feasibility of the method is verified by its application to a Mecanum wheel omnidirectional mobile platform as an example, as well as suitable for other type chassis of mobile robots. The proposed calibration method is thereby demonstrated to guarantee the accuracy of robot pose estimation.