论文标题

$ n $ -cube的中央对角线部分

Central diagonal sections of the $n$-cube

论文作者

Bartha, Ferenc, Fodor, Ferenc, Merino, Bernardo González

论文摘要

我们证明,在$ \ mathbb {r}^n $正交中,单位立方体的中央超平面部分与立方体的直径是$ n \ geq 3 $的尺寸的严格单调增加的功能。我们的参数使用一个积分公式,该公式可以返回到pólya\ cite {p}(另请参见\ cite {h}和\ cite {b86}),以获取立方体的中央部分的体积,以及Laplace的方法来估算整体的渐进性行为。首先,我们证明单调性从一些特定的$ n_0 $开始。然后,使用间隔算术(IA)和自动分化(AD),我们计算了以$ N_0 $的明确绑定,并通过直接计算检查其余案例之间的剩余案例。

We prove that the volume of central hyperplane sections of a unit cube in $\mathbb{R}^n$ orthogonal to a diameter of the cube is a strictly monotonically increasing function of the dimension for $n\geq 3$. Our argument uses an integral formula that goes back to Pólya \cite{P} (see also \cite{H} and \cite{B86}) for the volume of central sections of the cube, and Laplace's method to estimate the asymptotic behaviour of the integral. First we show that monotonicity holds starting from some specific $n_0$. Then, using interval arithmetic (IA) and automatic differentiation (AD), we compute an explicit bound for $n_0$, and check the remaining cases between $3$ and $n_0$ by direct computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源