论文标题

搅拌板:知识渊博的风格化集成文本生成平台

MixingBoard: a Knowledgeable Stylized Integrated Text Generation Platform

论文作者

Gao, Xiang, Galley, Michel, Dolan, Bill

论文摘要

我们提出搅拌板,这是一个快速构建演示的平台,重点是知识接地的风格化文本生成。我们在共享代码库中统一了现有的文本生成算法,并进一步适应了早期的算法以生成约束。要从不同模型中借用优势,我们实施了跨模型集成的策略,从令牌概率级别到潜在的空间级别。通过一个模块提供了外部知识的接口,该模块可以从网络或任何文档集合中检索即时相关的知识。提供了用于本地开发的用户界面,远程网页访问和RESTFUL API,以使用户可以简单地构建自己的演示。

We present MixingBoard, a platform for quickly building demos with a focus on knowledge grounded stylized text generation. We unify existing text generation algorithms in a shared codebase and further adapt earlier algorithms for constrained generation. To borrow advantages from different models, we implement strategies for cross-model integration, from the token probability level to the latent space level. An interface to external knowledge is provided via a module that retrieves on-the-fly relevant knowledge from passages on the web or any document collection. A user interface for local development, remote webpage access, and a RESTful API are provided to make it simple for users to build their own demos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源