论文标题

在具有准算术平均值的功能分化方程式上

On a functional-differential equation with quasi-arithmetic mean value

论文作者

Ibragimov, Shokhrukh

论文摘要

在本文中,我们描述了所有可满足函数 - 差异方程\ begin \ begin \ begin {equation*} [φ(y) - φ(x)]ψ''\ bigl(h(x,y)\ bigR(x,bigr)= [φ(x)\ bigr)= [φ(x)\ bigr(x)= [eque(x)\ bigr(x y(x), ψ(x)]φ'\ bigl(h(x,y)\ bigr),\ end {equation*}对于所有$ x,y $,$ x <y $,其中$ e \ e \ subseteq \ subseteq \ subseteeq \ mathbb {r} $是一个非公开的nikess,$ h(\ cdot,\ cdot,\ cdot)$ is a quasii- is quasii,I. $ h(x,y)= h^{ - 1}(αH(x)+βH(y))$,$ x,y \在e $中,对于某些可区分且严格的单调函数$ h \ colon e \ to H(e)$和固定$α,$α,β\ in(0,1)$,$α+β+β= 1 $ $ $。

In this paper we describe all differentiable functions $φ,ψ\colon E\to\mathbb{R}$ satisfying the functional-differential equation \begin{equation*} [φ(y) - φ(x)]ψ'\bigl(h(x,y)\bigr) = [ψ(y) - ψ(x)]φ'\bigl(h(x,y)\bigr), \end{equation*} for all $x,y\in E$, $x<y$, where $E \subseteq \mathbb{R}$ is a nonempty open interval, $h(\cdot,\cdot)$ is a quasi-arithmetic mean, i.e. $h(x,y)=H^{-1}(αH (x)+βH (y))$, $x,y\in E$, for some differentiable and strictly monotone function $H\colon E \to H(E)$ and fixed $α, β\in (0,1)$ with $α+β=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源