论文标题

退化的椭圆形问题与单数非线性

Degenerate elliptic problem with a singular nonlinearity

论文作者

Sbai, Abdelaaziz, hadfi, Youssef El

论文摘要

在本文中,我们证明了某些非线性差异问题的解决方案的存在和规律性结果,用于由退化的强制操作员和单一的右手侧定义的椭圆方程。 \ begin {equination} \ label {01} \ left \ {\ begin {array} {lll} {lll} - \ displaystyle \ mbox {div}(a(a(x,x,x,x,u,\ nabla u)) &\ mbox {in}ω\\ u&= 0&\ mbox {on}ΔΩ\ end {array} \ right。 \ end {equation}其中$ω$是$ i \!\!r^{n}(n \ geq2)的开放子集,$ $ $umγ> 0 $和$ f $是属于某些Lebesgue Space的非负函数。

In this paper, we prove existence and regularity results for solutions of some nonlinear Dirichlet problems for an elliptic equation defined by a degenerate coercive operator and a singular right hand side. \begin{equation}\label{01} \left\{ \begin{array}{lll} -\displaystyle\mbox{div}( a(x,u,\nabla u))&=\displaystyle\frac{f}{u^γ} & \mbox{ in } Ω\\ u&>0 &\mbox{ in }Ω\\ u&=0 &\mbox{ on } δΩ\end{array} \right. \end{equation} where $Ω$ is bounded open subset of $I\!\!R^{N}(N\geq2),$ $γ>0$ and $ f$ is a nonnegative function that belongs to some Lebesgue space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源