论文标题

大型年轻图的分类概率

Sorting probability for large Young diagrams

论文作者

Chan, Swee Hong, Pak, Igor, Panova, Greta

论文摘要

对于有限的poset $ p =(x,\ prec)$,让$ \ mathcal {l} _p $表示$ p $的线性扩展集。排序概率$δ(p)$定义为 \ [δ(p)\,:= \,\ min_ {x,y \ in x} \,\ bigl | \ Mathbf {p} \,[l(x)\ leq l(y)] \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l(y)\ leq l(x)] \ bigr | \ \ ,, \ \ ,, \]其中$ l \ in $ l \ in \ mathcal {l} _p $ is a Us a Us a Is a Us a Us a Is a Use linear linear sextorsion sermeral sertormentions of $ p $ $ p $ $ p $。我们给出了与大型年轻图和大偏斜的年轻图相关的POSET的分类概率的渐近上限,并具有界数的行。

For a finite poset $P=(X,\prec)$, let $\mathcal{L}_P$ denote the set of linear extensions of $P$. The sorting probability $δ(P)$ is defined as \[δ(P) \, := \, \min_{x,y\in X} \, \bigl| \mathbf{P} \, [L(x)\leq L(y) ] \ - \ \mathbf{P} \, [L(y)\leq L(x) ] \bigr|\,, \] where $L \in \mathcal{L}_P$ is a uniform linear extension of $P$. We give asymptotic upper bounds on sorting probabilities for posets associated with large Young diagrams and large skew Young diagrams, with bounded number of rows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源