论文标题

简约计算:用于大型微阵列表达数据集有效预测的少数培训制度

Parsimonious Computing: A Minority Training Regime for Effective Prediction in Large Microarray Expression Data Sets

论文作者

Sridhar, Shailesh, Saha, Snehanshu, Shaikh, Azhar, Yedida, Rahul, Saha, Sriparna

论文摘要

严格的数学研究对浅层神经网络中的后传播的学习率进行了严格的研究已成为必要。这是因为实验证据需要由理论背景认可。这种理论可能有助于减少实现预期结果的实验​​努力的数量。我们利用了均方根误差的功能性能,这是Lipschitz连续计算浅神经网络中的学习率。我们声称我们的方法减少了调整的工作,尤其是在必须处理大量数据的情况下。我们在节省计算成本方面取得了显着改善,同时超过了文献中报告的预测准确性。这里提出的学习率是Lipschitz常数的倒数。这项工作导致了一种新的方法,用于对大型微阵列数据集进行基因表达推断,其浅层结构受到有限的计算资源的约束。 A-Relu的数据集随机子采样,自适应Lipschitz常数学习率和新的激活函数的结合,有助于完成本文中报道的结果。

Rigorous mathematical investigation of learning rates used in back-propagation in shallow neural networks has become a necessity. This is because experimental evidence needs to be endorsed by a theoretical background. Such theory may be helpful in reducing the volume of experimental effort to accomplish desired results. We leveraged the functional property of Mean Square Error, which is Lipschitz continuous to compute learning rate in shallow neural networks. We claim that our approach reduces tuning efforts, especially when a significant corpus of data has to be handled. We achieve remarkable improvement in saving computational cost while surpassing prediction accuracy reported in literature. The learning rate, proposed here, is the inverse of the Lipschitz constant. The work results in a novel method for carrying out gene expression inference on large microarray data sets with a shallow architecture constrained by limited computing resources. A combination of random sub-sampling of the dataset, an adaptive Lipschitz constant inspired learning rate and a new activation function, A-ReLU helped accomplish the results reported in the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源