论文标题

在广义的SO(2n,c)

On the generalized SO(2n,C)-opers

论文作者

Biswas, Indranil, Schaposnik, Laura P., Yang, Mengxue

论文摘要

自从他们被贝林森·德林菲尔德(Beilinson-Drinfeld)\ cite {bd,opers1}引入以来,Opers已经看到了几种概括。在\ cite {bsy}中,研究了一个较高的等级模拟,命名为{概括$ b $ - opers},其中允许操作过滤的连续商具有更高的等级,并且具有基础的全体形态载体束具有双线性形式,并与滤波器和运算连接兼容。由于该定义没有涵盖均匀的群体,因此我们将本文专门用于研究其结构组为$ {\ rm so}(2n,\ mathbb {c})$的广义$ b $ opers,并显示他们与Riemann表面上的几何结构的密切关系。

Since their introduction by Beilinson-Drinfeld \cite{BD,Opers1}, opers have seen several generalizations. In \cite{BSY} a higher rank analog was studied, named {generalized $B$-opers}, where the successive quotients of the oper filtration are allowed to have higher rank and the underlying holomorphic vector bundle is endowed with a bilinear form which is compatible with both the filtration and the oper connection. Since the definition didn't encompass the even orthogonal groups, we dedicate this paper to study generalized $B$-opers whose structure group is ${\rm SO}(2n,\mathbb{C})$, and show their close relationship with geometric structures on a Riemann surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源