论文标题
机械调制的旋转轨道耦合寡肽
Mechanically modulated spin orbit couplings in oligopeptides
论文作者
论文摘要
最近,实验表明在生物分子(例如DNA,蛋白质,寡肽和氨基酸)等生物学分子中的自旋活性非常明显。这种分子具有共同的手性结构,时间逆转对称性以及没有磁交换相互作用。然后假定自旋活性是由于纯自旋 - 轨道(SO)相互作用左右与强大的电场局部源的存在相结合。在这里,我们为寡肽的分析结合哈密顿模型提供了一种考虑了氢键引起的固有的SO和RashBA相互作用。我们使用最低阶扰动理论带折叠方案,并得出互源空间固有的和Rashba型汉密尔顿术语来评估寡肽的自旋活性及其对分子单轴变形的依赖性。因此,发现了数十个MEV的优势并明确的自旋主动变形电位。我们发现对变形的响应既增强又会降低强度,从而可以进行轨道模型的实验测试。与最近实验的定性一致性显示了氢键在自旋活性中的作用。
Recently experiments have shown very significant spin activity in biological molecules such as DNA, proteins, oligopeptides and aminoacids. Such molecules have in common their chiral structure, time reversal symmetry and the absence of magnetic exchange interactions. The spin activity is then assumed to be due to either the pure Spin-orbit (SO) interaction or SO coupled to the presence of strong local sources of electric fields. Here we derive an analytical tight-binding Hamiltonian model for Oligopeptides that contemplates both intrinsic SO and Rashba interaction induced by hydrogen bond. We use a lowest order perturbation theory band folding scheme and derive the reciprocal space intrinsic and Rashba type Hamiltonian terms to evaluate the spin activity of the oligopeptide and its dependence of molecule uniaxial deformations. SO strengths in the tens of meV are found and explicit spin active deformation potentials. We find a rich interplay between responses to deformations both to enhance and diminish SO strength that allow for experimental testing of the orbital model. Qualitative consistency with recent experiments shows the role of hydrogen bonding in spin activity.