论文标题
Lepton对频谱在Drell-YAN过程中的统计行为和高能量碰撞中夸克 - 网状血浆信号的统计行为
Statistical Behavior of Lepton Pair Spectrum in Drell-Yan Process and Signal from Quark-Gluon Plasma in High Energy Collisions
论文作者
论文摘要
我们分析了Lepton对的横向动量($ p_ {t} $)光谱($ \ ell \ bar \ ell $),如proton-nucleus(pion-nucleus)(pion-nucleus)和Proton-(proton-(anti)proton collisions在proton-nucleus(pion-nucleus)中所检测到的,$ \ s $ \ sqrt { $ \ sqrt {s} $如果以简化的形式)从$ \ sim20 $ gev到10 tev以上。使用三种类型的概率密度函数(两个lévy-tsallis函数的卷积,两分量的Erlang分布和两个Hagedorn函数的卷积)用于拟合和分析$ p_ {t} $ spectra。拟合结果大致与收集的实验数据一致。连续地,我们获得了相关参数的变化定律,这是$ \ sqrt {s} $和不变质量($ q $)的函数。在拟合过程中,给定的lévy-tsallis(或Hagedorn)功能可以视为由单个夸克($ q $)或反夸克($ \ bar q $)贡献的横向动量的概率密度函数。然后通过统计方法描述DRELL-YAN过程。
We analyze the transverse momentum ($p_{T}$) spectra of lepton pairs ($\ell\bar \ell$) generated in the Drell-Yan process, as detected in proton-nucleus (pion-nucleus) and proton-(anti)proton collisions by ten collaborations over a center-of-mass energy ($\sqrt{s_{NN}}$ or $\sqrt{s}$ if in a simplified form) range from $\sim20$ GeV to above 10 TeV. Three types of probability density functions (the convolution of two Lévy-Tsallis functions, the two-component Erlang distribution, and the convolution of two Hagedorn functions) are utilized to fit and analyze the $p_{T}$ spectra. The fit results are approximately in agreement with the collected experimental data. Consecutively, we obtained the variation law of related parameters as a function of $\sqrt{s}$ and invariant mass ($Q$). In the fit procedure, a given Lévy-Tsallis (or Hagedorn) function can be regarded as the probability density function of transverse momenta contributed by a single quark ($q$) or anti-quark ($\bar q$). The Drell-Yan process is then described by the statistical method.