论文标题
使用颞葡萄糖谱的机器学习以诊断早期糖尿病
Machine learning for the diagnosis of early stage diabetes using temporal glucose profiles
论文作者
论文摘要
机器学习在识别数据中的模式方面取得了巨大的成功。在这里,我们将机器学习(ML)应用于早期糖尿病的诊断,这在医学中被称为具有挑战性的任务。血糖水平受两种反调节激素,胰岛素和胰葡萄糖的严格调节,葡萄糖稳态的失败导致常见的代谢性疾病,即糖尿病。这是一种慢性疾病,具有漫长的潜在时期,因此早期对疾病的检测复杂。绝大多数糖尿病患者是由于胰岛素作用的有效性降低而导致的。胰岛素抵抗必须改变血糖的时间谱。因此,我们建议使用ML检测葡萄糖浓度的时间模式的细微变化。目前无法使用足够分辨率的血糖的时间序列数据,因此我们使用由生物物理模型产生的葡萄糖谱的合成数据确认了建议,该模型考虑了葡萄糖调节和激素作用。多层感知器,卷积神经网络和经常性神经网络均鉴定出高准确性高于$ 85 \%$的胰岛素抵抗程度。
Machine learning shows remarkable success for recognizing patterns in data. Here we apply the machine learning (ML) for the diagnosis of early stage diabetes, which is known as a challenging task in medicine. Blood glucose levels are tightly regulated by two counter-regulatory hormones, insulin and glucagon, and the failure of the glucose homeostasis leads to the common metabolic disease, diabetes mellitus. It is a chronic disease that has a long latent period the complicates detection of the disease at an early stage. The vast majority of diabetics result from that diminished effectiveness of insulin action. The insulin resistance must modify the temporal profile of blood glucose. Thus we propose to use ML to detect the subtle change in the temporal pattern of glucose concentration. Time series data of blood glucose with sufficient resolution is currently unavailable, so we confirm the proposal using synthetic data of glucose profiles produced by a biophysical model that considers the glucose regulation and hormone action. Multi-layered perceptrons, convolutional neural networks, and recurrent neural networks all identified the degree of insulin resistance with high accuracy above $85\%$.