论文标题

通过硬阈值追踪从无量音测量中恢复稀疏信号

Sparse Signal Recovery from Phaseless Measurements via Hard Thresholding Pursuit

论文作者

Cai, Jian-Feng, Li, Jingzhi, Lu, Xiliang, You, Juntao

论文摘要

在本文中,我们考虑稀疏的相位检索问题,恢复了$ s $ -sparse信号$ \ bm {x}^{\ natural} \ in \ mathbb {r} $ i = 1,\ ldots,m $。现有的稀疏相检索算法通常是一阶,因此最多线性地收敛。受压缩传感中的硬阈值追踪(HTP)算法的启发,我们提出了一种有效的二阶算法,用于稀疏相位检索。从理论上讲,我们提出的算法可以保证在有限的情况下具有精确的稀疏信号恢复(尤其是$ o(\ log m + \ log(\ | \ | \ | \ | \ | \ | \ | \ | $ \ {\ bm {a} _i \} _ {i = 1}^{m} $是i.i.d.标准高斯随机向量,带有$ M \ sim O(s \ log(n/s))$,初始化位于基础稀疏信号的邻域。与光谱初始化一起,我们的算法可以从$ O(s^2 \ log n)$样本中具有精确的恢复。由于我们提出的算法的计算成本与流行的一阶算法相同,因此我们的算法非常有效。实验结果表明,我们的算法可能比现有稀疏相检索算法快几倍。

In this paper, we consider the sparse phase retrieval problem, recovering an $s$-sparse signal $\bm{x}^{\natural}\in\mathbb{R}^n$ from $m$ phaseless samples $y_i=|\langle\bm{x}^{\natural},\bm{a}_i\rangle|$ for $i=1,\ldots,m$. Existing sparse phase retrieval algorithms are usually first-order and hence converge at most linearly. Inspired by the hard thresholding pursuit (HTP) algorithm in compressed sensing, we propose an efficient second-order algorithm for sparse phase retrieval. Our proposed algorithm is theoretically guaranteed to give an exact sparse signal recovery in finite (in particular, at most $O(\log m + \log(\|\bm{x}^{\natural}\|_2/|x_{\min}^{\natural}|))$) steps, when $\{\bm{a}_i\}_{i=1}^{m}$ are i.i.d. standard Gaussian random vector with $m\sim O(s\log(n/s))$ and the initialization is in a neighborhood of the underlying sparse signal. Together with a spectral initialization, our algorithm is guaranteed to have an exact recovery from $O(s^2\log n)$ samples. Since the computational cost per iteration of our proposed algorithm is the same order as popular first-order algorithms, our algorithm is extremely efficient. Experimental results show that our algorithm can be several times faster than existing sparse phase retrieval algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源