论文标题
具有整数价值分配差异的函数
Functions with integer-valued divided differences
论文作者
论文摘要
令$ s_0,s_1,s_2,\ ldots $为一系列有理数的序列,其$ m $ th的差异差为整数。我们证明,如果$ s_n \llθ^n $对于某些正数$θ$满足$θ<e^{1 + \ tfrac {1} {1} {2} {2} + \ cdots + \ cdfrac + \ tfrac {1} {1} {m} {m}}} -
Let $s_0,s_1,s_2,\ldots$ be a sequence of rational numbers whose $m$th divided difference is integer-valued. We prove that $s_n$ is a polynomial function in $n$ if $s_n \ll θ^n$ for some positive number $θ$ satisfying $θ< e^{1 + \tfrac{1}{2} + \cdots+ \tfrac{1}{m}} -1$.