论文标题

涵盖积极特征的完全交叉点的性质

Covering gonalities of complete intersections in positive characteristic

论文作者

Smith, Geoffrey

论文摘要

我们定义了在任意领域的覆盖范围和可分离性的覆盖范围,从而推广了Bastianelli-de Poi-ein lazarsfeld-ullery对复杂品种的定义。我们表明,在任意字段上,$ \ mathbb {p}^n $中平滑的多智能$(d_1,\ ldots,d_k)$完整的交叉点具有可分离的覆盖率,至少$ d-n+1 $,其中$ d = d_1+\ cdots+cdots+d_k $。我们还表明,如此一般的品种具有至少$ \ frac {d-n+2} {2} $。

We define the covering gonality and separable covering gonality of varieties over arbitrary fields, generalizing the definition given by Bastianelli-de Poi-Ein-Lazarsfeld-Ullery for complex varieties. We show that over an arbitrary field a smooth multidegree $(d_1,\ldots,d_k)$ complete intersection in $\mathbb{P}^N$ has separable covering gonality at least $d-N+1$, where $d=d_1+\cdots+d_k$. We also show that the very general such variety has covering gonality at least $\frac{d-N+2}{2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源