论文标题
多极围绕问题中非Fermi液体固定点的批判理论
Critical theory of non-Fermi liquid fixed point in multipolar Kondo problem
论文作者
论文摘要
当局部离子的基态是非kramer doublet时,这种局部离子可能会带有多极矩。例如,在立方环境中的pr $^{3+} $离子将具有四极和八极极,但没有磁性偶极子。当将这样的多极矩放在金属宿主中时,与经典的近托问题中熟悉的磁偶极相互作用相反,这些局部矩和传导电子之间的异常相互作用就会出现。在这项工作中,我们将单个四八分极局部矩和带有$ p $ - 轨对称性的传导电子之间的相互作用视为多极围绕问题的混凝土模型。我们表明,该模型可以最自然地写在传导电子的自旋轨道纠缠基础上。使用此基础,很容易识别扰动重新归一化组(RG)固定点。有两种固定点,一个用于两通道近藤,另一个用于一个新颖的固定点。我们使用非亚伯隆化,当前代数和保形场理论方法对新型固定点的性质进行非扰动。结果表明,新颖的固定点会导致具有纠缠旋转和轨道自由度的以前未鉴定的非fermi液态,该液态显示了电阻率$ρ\ sim t^δ$,并与特定的热系数$ c/t \ sim t \ sim t^{ - 1 +2δ} $,带有$δ= 1/5 $。我们的结果开辟了无数非Fermi液态的可能性,具体取决于多极矩和传导电子轨道的选择,这与许多稀土金属系统有关。
When the ground state of a localized ion is a non-Kramers doublet, such localized ions may carry multipolar moments. For example, Pr$^{3+}$ ions in a cubic environment would possess quadrupolar and octupolar, but no magnetic dipole, moments. When such multipolar moments are placed in a metallic host, unusual interactions between these local moments and conduction electrons arise, in contrast to the familiar magnetic dipole interactions in the classic Kondo problem. In this work, we consider the interaction between a single quadrupolar-octupolar local moment and conduction electrons with $p$-orbital symmetry as a concrete model for the multipolar Kondo problem. We show that this model can be written most naturally in the spin-orbital entangled basis of conduction electrons. Using this basis, the perturbative renormalization group (RG) fixed points are readily identified. There are two kinds of fixed points, one for the two-channel Kondo and the other for a novel fixed point. We investigate the nature of the novel fixed point non-perturbatively using non-abelian bosonization, current algebra and conformal field theory approaches. It is shown that the novel fixed point leads to a, previously unidentified, non-Fermi liquid state with entangled spin and orbital degrees of freedom, which shows resistivity $ρ\sim T^Δ$ and diverging specific heat coefficient $C/T \sim T^{-1 + 2Δ}$ with $Δ=1/5$. Our results open up the possibility of myriads of non-Fermi liquid states, depending on the choices of multipolar moments and conduction electron orbitals, which would be relevant for many rare-earth metallic systems.