论文标题
一般二次曲率重力理论中的全息复杂性
Holographic complexity in general quadratic curvature theory of gravity
论文作者
论文摘要
在CA猜想的全息复杂性的背景下,我们研究了一般二次曲率重力理论在晚期近似的作用增长率。我们展示了Lloyd的结合如何饱和,用于带电和中性的黑洞解决方案。我们观察到,第二个单点可能会将作用增长率修改为劳埃德(Lloyd)绑定以外的值。此外,我们发现复杂性的不同部分中出现的通用术语,从计算受调节的WDW贴片上的整体和关节项。
In the context of CA conjecture for holographic complexity, we study the action growth rate at late time approximation for general quadratic curvature theory of gravity. We show how the Lloyd's bound saturates for charged and neutral black hole solutions. We observe that a second singular point may modify the action growth rate to a value other than the Lloyd's bound. Moreover, we find the universal terms that appear in the divergent part of complexity from computing the bulk and joint terms on a regulated WDW patch.