论文标题

验证:安全且可验证的协作转移学习

VerifyTL: Secure and Verifiable Collaborative Transfer Learning

论文作者

Ma, Zhuoran, Ma, Jianfeng, Miao, Yinbin, Liu, Ximeng, Zheng, Wei, Choo, Kim-Kwang Raymond, Deng, Robert H.

论文摘要

在某些敏感的应用程序域中访问在某些敏感的应用程序域中访问标记的数据集可能具有挑战性。因此,人们经常求助于将学习从源域中学到的知识转移到具有足够标记的数据到具有有限标记数据的目标域中的知识。但是,大多数现有的转移学习技术仅着眼于单向转移,这给源域没有任何好处。此外,有秘密对手损坏许多域的风险,因此可能导致预测或隐私泄漏不准确。在本文中,我们构建了一种安全且可验证的协作转移学习方案验证,以通过将知识转移从目标域转移到源域来支持潜在不受信任的数据集对双向转移学习。此外,我们为使用SPDZ计算的跨传输单元和一个编织单元配备了验证,分别在两域设置和多域设置中提供隐私保证和验证。因此,验证对秘密对手是安全的,该对手可以从n个数据域中损害最多n-1。我们分析了验证的安全性,并在两个现实世界数据集上评估了其性能。实验结果表明,验证对现有的安全学习方案的绩效取得了显着增长。

Getting access to labelled datasets in certain sensitive application domains can be challenging. Hence, one often resorts to transfer learning to transfer knowledge learned from a source domain with sufficient labelled data to a target domain with limited labelled data. However, most existing transfer learning techniques only focus on one-way transfer which brings no benefit to the source domain. In addition, there is the risk of a covert adversary corrupting a number of domains, which can consequently result in inaccurate prediction or privacy leakage. In this paper we construct a secure and Verifiable collaborative Transfer Learning scheme, VerifyTL, to support two-way transfer learning over potentially untrusted datasets by improving knowledge transfer from a target domain to a source domain. Further, we equip VerifyTL with a cross transfer unit and a weave transfer unit employing SPDZ computation to provide privacy guarantee and verification in the two-domain setting and the multi-domain setting, respectively. Thus, VerifyTL is secure against covert adversary that can compromise up to n-1 out of n data domains. We analyze the security of VerifyTL and evaluate its performance over two real-world datasets. Experimental results show that VerifyTL achieves significant performance gains over existing secure learning schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源