论文标题

广告的新边界条件$ _2 $

New boundary conditions for AdS$_2$

论文作者

Godet, Victor, Marteau, Charles

论文摘要

我们描述了广告的新边界条件$ _2 $ in Jackiw-teitelboim重力。渐近对称群增强到$ \ r {diff}(s^1)\ ltimes c^\ infty(s^1)$,其突破到$ \ r {sl}(2,\ r)\ times \ times \ times \ timesů(1)$控制近ads $ _2 $ _2 $ _2 $ dynamics。该动作还原为边界项,这是施瓦茨理论的概括,可以解释为扭曲的Virasoro群体的共同动作。该理论重现了复杂SYK模型的低能有效作用。我们计算欧几里得路径积分,并得出与Saad,Shenker和Stanford的随机矩阵合奏的关系。我们研究了此动作的扁平空间版本,并表明相应的路径积分也给出了整体平均值,但性质更为简单。我们探索了一些对近超级黑洞的应用。

We describe new boundary conditions for AdS$_2$ in Jackiw-Teitelboim gravity. The asymptotic symmetry group is enhanced to $\r{Diff}(S^1)\ltimes C^\infty(S^1)$ whose breaking to $\r{SL}(2,\R)\times Ů(1)$ controls the near-AdS$_2$ dynamics. The action reduces to a boundary term which is a generalization of the Schwarzian theory and can be interpreted as the coadjoint action of the warped Virasoro group. This theory reproduces the low-energy effective action of the complex SYK model. We compute the Euclidean path integral and derive its relation to the random matrix ensemble of Saad, Shenker and Stanford. We study the flat space version of this action, and show that the corresponding path integral also gives an ensemble average, but of a much simpler nature. We explore some applications to near-extremal black holes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源