论文标题

使用深度学习的热带和热带气旋检测

Tropical and Extratropical Cyclone Detection Using Deep Learning

论文作者

Kumler-Bonfanti, Christina, Stewart, Jebb, Hall, David, Govett, Mark

论文摘要

从大量不同的气象数据中提取有价值的信息是一个耗时的过程。机器学习方法可以帮助提高此过程的速度和准确性。具体而言,使用U-NET结构的深度学习图像分割模型的性能更快,并且可以通过更限制的方法(例如专家手工标记和先验的启发式方法)识别所遗漏的区域。本文讨论了四种不同的最先进的U-NET模型,该模型旨在检测来自两个单独的输入来源的热带和热带旋风旋风的兴趣区域(ROI):全球预测系统(GFS)模型和水蒸气辐射的总降水量输出,来自地球上的操作环境卫星(GOM)。这些模型称为IBTRACS-GF,启发式GFS,IBTRACS-GOES和启发式游戏。所有四个U-NET都是快速的信息提取工具,并以ROI检测精度从80%到99%进行执行。这些骰子和tversky交叉点在联合(IOU)指标上进行了评估,骰子系数得分范围从0.51到0.76,Tversky系数范围为0.56至0.74。热带气旋U-NET模型的执行速度比用于检测相同ROI的可比启发式模型快3倍。专门选择了U-NET,因为它们在检测训练标签范围之外的旋风ROI方面的能力。这些机器学习模型确定了通过启发式模型和经常使用的手工标记方法遗漏了更模棱两可和积极的ROI,这些方法通常用于生成实时天气警报,对公共安全产生了直接影响。

Extracting valuable information from large sets of diverse meteorological data is a time-intensive process. Machine learning methods can help improve both speed and accuracy of this process. Specifically, deep learning image segmentation models using the U-Net structure perform faster and can identify areas missed by more restrictive approaches, such as expert hand-labeling and a priori heuristic methods. This paper discusses four different state-of-the-art U-Net models designed for detection of tropical and extratropical cyclone Regions Of Interest (ROI) from two separate input sources: total precipitable water output from the Global Forecasting System (GFS) model and water vapor radiance images from the Geostationary Operational Environmental Satellite (GOES). These models are referred to as IBTrACS-GFS, Heuristic-GFS, IBTrACS-GOES, and Heuristic-GOES. All four U-Nets are fast information extraction tools and perform with a ROI detection accuracy ranging from 80% to 99%. These are additionally evaluated with the Dice and Tversky Intersection over Union (IoU) metrics, having Dice coefficient scores ranging from 0.51 to 0.76 and Tversky coefficients ranging from 0.56 to 0.74. The extratropical cyclone U-Net model performed 3 times faster than the comparable heuristic model used to detect the same ROI. The U-Nets were specifically selected for their capabilities in detecting cyclone ROI beyond the scope of the training labels. These machine learning models identified more ambiguous and active ROI missed by the heuristic model and hand-labeling methods commonly used in generating real-time weather alerts, having a potentially direct impact on public safety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源