论文标题

向轻量级老师学习以有效的知识蒸馏

Learning from a Lightweight Teacher for Efficient Knowledge Distillation

论文作者

Liu, Yuang, Zhang, Wei, Wang, Jun

论文摘要

知识蒸馏(KD)是压缩深度学习模型的有效框架,这是由学生教师范式实现的,需要小型学生网络模仿训练有素的老师产生的软目标。但是,通常认为教师很复杂,需要与学生在同一数据集上进行培训。这导致了耗时的培训过程。最近的研究表明,香草KD与标签平滑作用相似,并发展了无教师的KD,效率和减轻了从繁重的教师那里学习的问题。但是,由于无教师的KD依赖于手动制作的输出分布在属于同一类的所有数据实例中保持不变,因此其灵活性和性能相对有限。为了解决上述问题,本文提出了有效的知识蒸馏学习框架LW-KD,缩短了轻量化知识蒸馏。首先,它在合成的简单数据集上训练轻型教师网络,其可调类号等于目标数据集的类别。然后,老师产生软目标,增强的KD损失可以指导学生学习,这是KD损失和对抗性损失的结合,使学生的成绩与教师的成果无法区分。在几个具有不同方式的公共数据集上的实验表明LWKD是有效而有效的,这表明其主要设计原理的合理性。

Knowledge Distillation (KD) is an effective framework for compressing deep learning models, realized by a student-teacher paradigm requiring small student networks to mimic the soft target generated by well-trained teachers. However, the teachers are commonly assumed to be complex and need to be trained on the same datasets as students. This leads to a time-consuming training process. The recent study shows vanilla KD plays a similar role as label smoothing and develops teacher-free KD, being efficient and mitigating the issue of learning from heavy teachers. But because teacher-free KD relies on manually-crafted output distributions kept the same for all data instances belonging to the same class, its flexibility and performance are relatively limited. To address the above issues, this paper proposes en efficient knowledge distillation learning framework LW-KD, short for lightweight knowledge distillation. It firstly trains a lightweight teacher network on a synthesized simple dataset, with an adjustable class number equal to that of a target dataset. The teacher then generates soft target whereby an enhanced KD loss could guide student learning, which is a combination of KD loss and adversarial loss for making student output indistinguishable from the output of the teacher. Experiments on several public datasets with different modalities demonstrate LWKD is effective and efficient, showing the rationality of its main design principles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源