论文标题

在个性化排名中解决班级不平衡问题

Addressing Class-Imbalance Problem in Personalized Ranking

论文作者

Yu, Lu, Pei, Shichao, Zhang, Chuxu, Liang, Shangsong, Bai, Xiao, Chawla, Nitesh, Zhang, Xiangliang

论文摘要

成对排名模型已被广泛用于解决建议问题。基本思想是,如果存在用户 - 项目交互,则通过将项目分隔为\ emph {patrion}样本来了解用户首选项目的等级,\ emph {noad}示例否则。由于可观察到的相互作用数量有限,成对排名模型面临严重的\ emph {class-falance}问题。我们的理论分析表明,当前基于抽样的方法导致顶点级别的失衡问题,这使得在一定的训练迭代后,学到的项目嵌入到无限的情况下,导致梯度消失并影响模型推断结果。因此,我们提出了一个有效的\ emph {\下划线{vi} tal \下划线{n} eSgative \ exustline {s} ampler}(vins),以减轻对成对排名模型的类别不平衡问题,尤其是通过渐变方法进行了深度学习模型。 VIN的核心是具有拒绝概率的偏置采样器,它往往会接受比给定的阳性项目更大的候选者。对几个实际数据集的评估结果表明,提议的抽样方法加快了训练程序的速度30 \%至50 \%,对于从浅层到深层的排名模型,同时保持了Top-N项目建议中的排名质量。

Pairwise ranking models have been widely used to address recommendation problems. The basic idea is to learn the rank of users' preferred items through separating items into \emph{positive} samples if user-item interactions exist, and \emph{negative} samples otherwise. Due to the limited number of observable interactions, pairwise ranking models face serious \emph{class-imbalance} issues. Our theoretical analysis shows that current sampling-based methods cause the vertex-level imbalance problem, which makes the norm of learned item embeddings towards infinite after a certain training iterations, and consequently results in vanishing gradient and affects the model inference results. We thus propose an efficient \emph{\underline{Vi}tal \underline{N}egative \underline{S}ampler} (VINS) to alleviate the class-imbalance issue for pairwise ranking model, in particular for deep learning models optimized by gradient methods. The core of VINS is a bias sampler with reject probability that will tend to accept a negative candidate with a larger degree weight than the given positive item. Evaluation results on several real datasets demonstrate that the proposed sampling method speeds up the training procedure 30\% to 50\% for ranking models ranging from shallow to deep, while maintaining and even improving the quality of ranking results in top-N item recommendation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源