论文标题
用于重力波检测的机器学习:替代维也纳过滤,以预测和优化在处女座的牛顿噪声
Machine learning for gravitational-wave detection: surrogate Wiener filtering for the prediction and optimized cancellation of Newtonian noise at Virgo
论文作者
论文摘要
在重力波检测器中,从地面重力波动(也称为牛顿噪声(NN))中取消噪声是一个巨大的挑战。重力波动是由与环境场相关的密度扰动引起的,例如地震和声场,其特征在于复杂的空间相关性。这些字段的测量必须提供不完整的信息,问题是如何最佳地使用可用信息来设计噪声策略系统。在本文中,我们提出了一种计算Wiener滤波器的替代模型的机器学习方法。该模型用于计算不同数量的传感器的地震计阵列的最佳配置,这是NN取消系统设计的缺失的钥匙到底。优化结果表明,即使对于复杂的地震磁场,也可以实现有效的噪声消除,只要它们以最佳配置部署,地震仪相对较少。在此处介绍的形式中,优化方法可以应用于位于表面的所有当前和将来的重力波检测器,并且对未来的地下探测器进行了较小的修改。
The cancellation of noise from terrestrial gravity fluctuations, also known as Newtonian noise (NN), in gravitational-wave detectors is a formidable challenge. Gravity fluctuations result from density perturbations associated with environmental fields, e.g., seismic and acoustic fields, which are characterized by complex spatial correlations. Measurements of these fields necessarily provide incomplete information, and the question is how to make optimal use of available information for the design of a noise-cancellation system. In this paper, we present a machine-learning approach to calculate a surrogate model of a Wiener filter. The model is used to calculate optimal configurations of seismometer arrays for a varying number of sensors, which is the missing keystone for the design of NN cancellation systems. The optimization results indicate that efficient noise cancellation can be achieved even for complex seismic fields with relatively few seismometers provided that they are deployed in optimal configurations. In the form presented here, the optimization method can be applied to all current and future gravitational-wave detectors located at the surface and with minor modifications also to future underground detectors.