论文标题
相对于图形的非折线路径上的矩阵的极限定理
The limit theorem with respect to the matrices on non-backtracking paths of a graph
论文作者
论文摘要
我们对与常规图的非折线路径相关的矩阵给出了极限定理。获得的极限与Arcsine Law的$ K $ TH MONES非常相似。此外,我们获得了与A. Lubotzky,R。Phillips和P. Sarnak定义的Ramanujan图相关的cusp形式的$ p^m $ th傅立叶系数的渐近学。
We give a limit theorem with respect to the matrices related to non-backtracking paths of a regular graph. The limit obtained closely resembles the $k$th moments of the arcsine law. Furthermore, we obtain the asymptotics of the averages of the $p^m$th Fourier coefficients of the cusp forms related to the Ramanujan graphs defined by A. Lubotzky, R. Phillips and P. Sarnak.