论文标题

深2D超声心动图分段中的不确定性估计

Uncertainty Estimation in Deep 2D Echocardiography Segmentation

论文作者

Dahal, Lavsen, Kafle, Aayush, Khanal, Bishesh

论文摘要

2D超声心动图是心血管疾病最常见的成像方式。超声(US)的可移植性和相对较低的成本性质,使执行超声心动图所需的美国设备可以广泛使用。但是,获取和解释心脏的图像是依赖运营商,将其使用限制在专家存在的地方。最近,深度学习(DL)已在2D超声心动图中用于自动化视图分类以及结构和功能评估。尽管这些最近的作品在开发计算机引导的采集和对超声心动图的自动解释方面表现出了希望,但这些方法中的大多数都不建模和估计不确定性,这在测试来自远离培训数据的分布的数据时可能很重要。在图像采集阶段(通过以获取图像的质量向操作员提供实时反馈)以及在自动测量和解释期间,不确定性估计都可能是有益的(通过向操作员提供实时反馈。不确定性模型和量化度量的性能可能取决于预测任务以及要比较的模型。因此,为了洞悉美国图像的左心室分割的不确定性建模,我们比较了三个基于结合的不确定性模型,使用两个公开可用的超声心动图数据集对最先进的基线网络进行了四个不同的指标(一种新提出的)量化。我们进一步证明了如何使用不确定性估计来自动拒绝质量差的图像差并改善最新分割结果。

2D echocardiography is the most common imaging modality for cardiovascular diseases. The portability and relatively low-cost nature of Ultrasound (US) enable the US devices needed for performing echocardiography to be made widely available. However, acquiring and interpreting cardiac US images is operator dependent, limiting its use to only places where experts are present. Recently, Deep Learning (DL) has been used in 2D echocardiography for automated view classification, and structure and function assessment. Although these recent works show promise in developing computer-guided acquisition and automated interpretation of echocardiograms, most of these methods do not model and estimate uncertainty which can be important when testing on data coming from a distribution further away from that of the training data. Uncertainty estimates can be beneficial both during the image acquisition phase (by providing real-time feedback to the operator on acquired image's quality), and during automated measurement and interpretation. The performance of uncertainty models and quantification metric may depend on the prediction task and the models being compared. Hence, to gain insight of uncertainty modelling for left ventricular segmentation from US images, we compare three ensembling based uncertainty models quantified using four different metrics (one newly proposed) on state-of-the-art baseline networks using two publicly available echocardiogram datasets. We further demonstrate how uncertainty estimation can be used to automatically reject poor quality images and improve state-of-the-art segmentation results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源