论文标题
用隐藏的马尔可夫模型检测脉冲星故障检测
Pulsar glitch detection with a hidden Markov model
论文作者
论文摘要
PULSAR的时序实验通常通过绝对脉冲编号从一系列到达时间(TOA)的序列中生成相互连接的时序解决方案,即,通过拟合TOA之间的整数脉冲数,以最大程度地减少残差相对于参数化相模型。在这种观察模式下,当一些时期的No-Glitch相模型的残差分歧时,发现旋转故障,并且通过贝叶斯的随访来完善小故障参数。在这里提出了一种替代性的补充方法,该方法跟踪带有隐藏的马尔可夫模型(HMM)的脉冲频率$ f $及其时间衍生$ df/dt $,其动力包括随机旋转徘徊(时机噪声)和冲动性跳跃和$ f $ f $和$ df/dt $(glitches)。 HMM明确地跟踪自旋流浪,作为离散时间马尔可夫链的特定实现。它通过比较小故障和无凝结模型的贝叶斯因子来发现故障。为了方便起见,它摄入标准的TOA,并充分自动化,可以通过蒙特卡洛模拟快速计算性能界限。介绍了虚假警报概率和检测阈值(例如,最小可解析的小故障尺寸)与观察性调度计划参数(例如,TOA不确定性,TOAS之间的平均延迟)和小故障参数(例如,瞬态和永久跳转大小,指数恢复时间尺寸)。 HMM还适用于$ \ sim 1 $ yr真实数据的括号,2016年12月12日在PSR J0835-4510中的故障作为原则证明。它检测到已知的小故障,并确认在相同的数据中没有其他故障存在$> 10^{ - 7} f $。
Pulsar timing experiments typically generate a phase-connected timing solution from a sequence of times-of-arrival (TOAs) by absolute pulse numbering, i.e. by fitting an integer number of pulses between TOAs in order to minimize the residuals with respect to a parametrized phase model. In this observing mode, rotational glitches are discovered, when the residuals of the no-glitch phase model diverge after some epoch, and glitch parameters are refined by Bayesian follow-up. Here an alternative, complementary approach is presented which tracks the pulse frequency $f$ and its time derivative $df/dt$ with a hidden Markov model (HMM), whose dynamics include stochastic spin wandering (timing noise) and impulsive jumps in $f$ and $df/dt$ (glitches). The HMM tracks spin wandering explicitly, as a specific realization of a discrete-time Markov chain. It discovers glitches by comparing the Bayes factor for glitch and no-glitch models. It ingests standard TOAs for convenience and, being fully automated, allows performance bounds to be calculated quickly via Monte Carlo simulations. Practical, user-oriented plots are presented of the false alarm probability and detection threshold (e.g. minimum resolvable glitch size) versus observational scheduling parameters (e.g. TOA uncertainty, mean delay between TOAs) and glitch parameters (e.g. transient and permanent jump sizes, exponential recovery time-scale). The HMM is also applied to $\sim 1$ yr of real data bracketing the 2016 December 12 glitch in PSR J0835-4510 as a proof of principle. It detects the known glitch and confirms that no other glitch exists in the same data with size $> 10^{-7} f$.