论文标题
奇异的温斯坦猜想
The singular Weinstein conjecture
论文作者
论文摘要
在本文中,我们调查了先前在[mio]中引入的$ b^m $ contact歧管上的Reeb Dynamics,这些动力是从Hypersurface $ z $中进行的,但满足了$ z $的某些横向条件。这些接触结构的研究是由与边界接触歧管的研究动机。从这些歧管上搜索周期性的Reeb轨道,因此始于众所周知的Weinstein猜想的概括。与最初的期望相反,提供了紧凑型$ b^m $ - 接触歧管,而没有定期的Reeb Orbits $ Z $。此外,我们证明,在尺寸$ 3 $中,如果它是紧凑的,则在关键集合上总是有无限的周期轨道。我们证明,$ b^m $ reeb流的陷阱都存在于任何维度。这项研究与韦恩斯坦的猜想是在具有凸类紧凑端的非紧凑型歧管上的。特别是,我们扩展了Hofer的论点,以打开$ \ Mathbb r^+$ - 在开放式末端不变的明确的联系流歧管,作为必然的,以定期$ b^m-reeb Orbits的存在,远离关键集合。 $ B^M $ -REEB动力学的研究是由流体动力学和天体力学中的众所周知的问题所激发的,这些几何结构自然出现。特别是,我们证明,在限制的平面循环三体问题中,正面能量级的动力学由$ b^3 $ contact形式的REEB矢量场描述,该场在关键集合中接受了无限数量的周期性轨道。
In this article, we investigate Reeb dynamics on $b^m$-contact manifolds, previously introduced in [MiO], which are contact away from a hypersurface $Z$ but satisfy certain transversality conditions on $Z$. The study of these contact structures is motivated by that of contact manifolds with boundary. The search of periodic Reeb orbits on those manifolds thereby starts with a generalization of the well-known Weinstein conjecture. Contrary to the initial expectations, examples of compact $b^m$-contact manifolds without periodic Reeb orbits outside $Z$ are provided. Furthermore, we prove that in dimension $3$, there are always infinitely many periodic orbits on the critical set if it is compact. We prove that traps for the $b^m$-Reeb flow exist in any dimension. This investigation goes hand-in-hand with the Weinstein conjecture on non-compact manifolds having compact ends of convex type. In particular, we extend Hofer's arguments to open overtwisted contact manifolds that are $\mathbb R^+$-invariant in the open ends, obtaining as a corollary the existence of periodic $b^m$-Reeb orbits away from the critical set. The study of $b^m$-Reeb dynamics is motivated by well-known problems in fluid dynamics and celestial mechanics, where those geometric structures naturally appear. In particular, we prove that the dynamics on positive energy level-sets in the restricted planar circular three-body problem are described by the Reeb vector field of a $b^3$-contact form that admits an infinite number of periodic orbits at the critical set.