论文标题

重新审视的高速狭窄的颗粒流量向下倾斜

High-speed confined granular flows down inclines revisited

论文作者

Zhu, Y., Delannay, R., Valance, A.

论文摘要

最近的数值工作表明,高速狭窄的颗粒流倾斜倾斜表现出各种各样的流动模式,包括密集的单向流动,带有纵向涡流的流动和由稀释的热颗粒气包围的密集核心的支撑流(Brodu等人,Brodu等人,JFM 2015)。在这里,我们重新审查了Brodu等人获得的结果。 (JFM,2015年)并提出了这些流动表征的新功能。特别是,我们为包装部分,速度和颗粒温度提供了垂直和横向轮廓。我们还仔细表征了不同流动方案之间的过渡,并表明堆积分数和涡度可以成功地用于描述这些过渡。此外,我们强调的是,可以通过无量纲数的独特功能来描述在基础和侧壁上的有效摩擦,这是一个弗洛德数字的类似物:$ fr = v/\ sqrt {gh \cosθ} $,其中$ v $其中$θ$的粒子是粒子的粒子,$θ$ the $ h $ h $ hem $ h $ hem $ h $ he $ theup the $ h $ he $ h $ h $ h $ h $ - 定义了(定义的粒子(定义)(绘制)(绘制)(定义)(绘制)(绘制)(定义)绘制(绘制)绘制了绘制的绘制。该通用功能与$μ(i)$流变曲线具有一些相似之处,这些曲线得出了致密的颗粒流。

Recent numerical work has shown that high-speed confined granular flows down inclines exhibit a rich variety of flow patterns, including dense unidirectional flows, flows with longitudinal vortices and supported flows characterized by a dense core surrounded by a dilute hot granular gas (Brodu et al, JFM 2015). Here, we revisit the results obtained by Brodu et al. (JFM, 2015) and present new features characterizing these flows. In particular, we provide vertical and transverse profiles for the packing fraction, velocity and granular temperature.We also characterize carefully the transition between the different flow regimes and show that the packing fraction and the vorticity can be successfully used to describe these transitions. Additionally, we emphasize that the effective friction at the basal and side walls can be described by a unique function of a dimensionless number which is the analog of a Froude number: $Fr=V/\sqrt{gH\cos θ}$ where $V$ is the particle velocity at the walls, $θ$ is the inclination angle and $H$ the particle holdup (defined as the depth-integrated particle volume fraction). This universal function bears some similarities with the $μ(I)$ rheological curve derived for dense granular flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源