论文标题
Yaglom在不同环境中关键的Galton-Watson流程的极限:一种概率方法
Yaglom's limit for critical Galton-Watson processes in varying environment: A probabilistic approach
论文作者
论文摘要
在不同环境中的Galton-Watson过程是一个离散的时间分支过程,后代分布在世代之间有所不同。基于两种螺旋分解技术,我们提供了该家庭过程中Yaglom型极限的概率论点。结果指出,在关键情况下,适当的在非膨胀条件的过程中的合适归一化在分布时会收敛到指数随机变量。最近,通过Kersting [{\ it J. Appl。 probab。} {\ bf57}(1),196--220,2020]使用分析技术。
A Galton-Watson process in varying environment is a discrete time branching process where the offspring distributions vary among generations. Based on a two-spine decomposition technique, we provide a probabilistic argument of a Yaglom-type limit for this family processes. The result states that, in the critical case, a suitable normalisation of the process conditioned on non-extinction converges in distribution to an exponential random variable. Recently, this result has been established by Kersting [{\it J. Appl. Probab.} {\bf57}(1), 196--220, 2020] using analytic techniques.