论文标题

具有约束分布的非二元序列的顺序通用建模

Sequential Universal Modeling for Non-Binary Sequences with Constrained Distributions

论文作者

Drmota, Michael, Shamir, Gil, Szpankowski, Wojciech

论文摘要

顺序概率分配和通用压缩齐头并进。我们提出了具有经验分布的非二元(和大字母)序列的顺序概率分配,其参数已知在有限的间隔内被界定。顺序概率分配算法在许多需要快速准确估计最大序列概率的应用中必不可少。这些应用包括学习,回归,渠道估计和解码,预测和通用压缩。另一方面,受约束的分布引入了有趣的理论曲折,必须克服,以提出有效的顺序算法。在这里,我们着重于无内存源的通用压缩,并为最大值的最小值提供精确的分析和受约束分布的平均最小值。我们表明,我们基于修改的Krichevsky-Trofimov(KT)估计量基于最大和平均冗余的渐近算法是渐近的最佳最佳(1)$。本文遵循并解决了\ cite {stw08}中提出的挑战,该挑战建议“二进制案例的结果为研究较大的字母奠定了基础”。

Sequential probability assignment and universal compression go hand in hand. We propose sequential probability assignment for non-binary (and large alphabet) sequences with empirical distributions whose parameters are known to be bounded within a limited interval. Sequential probability assignment algorithms are essential in many applications that require fast and accurate estimation of the maximizing sequence probability. These applications include learning, regression, channel estimation and decoding, prediction, and universal compression. On the other hand, constrained distributions introduce interesting theoretical twists that must be overcome in order to present efficient sequential algorithms. Here, we focus on universal compression for memoryless sources, and present precise analysis for the maximal minimax and the average minimax for constrained distributions. We show that our sequential algorithm based on modified Krichevsky-Trofimov (KT) estimator is asymptotically optimal up to $O(1)$ for both maximal and average redundancies. This paper follows and addresses the challenge presented in \cite{stw08} that suggested "results for the binary case lay the foundation to studying larger alphabets".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源