论文标题
提防常用近似值I:预测中的错误
Beware of commonly used approximations I: errors in forecasts
论文作者
论文摘要
在精确宇宙学的时代,建立宇宙学参数中统计错误的正确幅度至关重要。然而,在银河调查分析中广泛使用的近似值可能会导致参数不确定性,即使在理论充分理解(例如,线性尺度)的制度中,也会严重误解。这些近似值可以在三个不同的层面上引入:以可能性的形式,可观察到的理论建模和可观察到的数值计算。它们的后果在通过例如Markov Chain Monte Carlo参数推断的数据分析中以及设计仪器和策略的设计并预测其对宇宙学参数的约束功率时,都会预计,例如使用Fisher矩阵分析,这一点很重要。在这项工作中,将星系角功率谱视为可观察到的目标,我们报告了这三个类别中每一个的一个近似示例:忽略协方差矩阵中的非对角线项,忽略了宇宙放大倍数并在大尺度上使用Limber近似。我们表明,这些常用的近似值会影响分析和铅的鲁棒性,也许是违反直觉的,这是对参数错误的大量错误估计(从〜$ 10 \%\%\%\%\%\%到几个$ 100 \%\%$)和相关性。此外,这些近似值甚至可能会破坏新生的多迹象和多理智宇宙学的好处。因此,我们建议在调查设计或数据分析中采用的每个近似值重复此处提供的分析类型,以量化其可能影响结果的方式。为此,我们开发了\ texttt {multi \ _class},这是\ texttt {class}的新扩展,其中包含多个(星系和其他示踪剂(例如引力波)群体)的角功率谱。
In the era of precision cosmology, establishing the correct magnitude of statistical errors in cosmological parameters is of crucial importance. However, widely used approximations in galaxy surveys analyses can lead to parameter uncertainties that are grossly mis-estimated, even in a regime where the theory is well understood (e.g., linear scales). These approximations can be introduced at three different levels: in the form of the likelihood, in the theoretical modelling of the observable and in the numerical computation of the observable. Their consequences are important both in data analysis through e.g., Markov Chain Monte Carlo parameter inference, and when survey instrument and strategy are designed and their constraining power on cosmological parameters is forecasted, for instance using Fisher matrix analyses. In this work, considering the galaxy angular power spectrum as the target observable, we report one example of approximation for each of such three categories: neglecting off-diagonal terms in the covariance matrix, neglecting cosmic magnification and using the Limber approximation on large scales. We show that these commonly used approximations affect the robustness of the analysis and lead, perhaps counter-intuitively, to unacceptably large mis-estimates of parameters errors (from few~$10\%$ up to few~$100\%$) and correlations. Furthermore, these approximations might even spoil the benefits of the nascent multi-tracer and multi-messenger cosmology. Hence we recommend that the type of analysis presented here should be repeated for every approximation adopted in survey design or data analysis, to quantify how it may affect the results. To this aim, we have developed \texttt{Multi\_CLASS}, a new extension of \texttt{CLASS} that includes the angular power spectrum for multiple (galaxy and other tracers such as gravitational waves) populations.