论文标题

重力修饰对静态球形结构复杂性因子的影响

Influence of Modification of Gravity on the Complexity Factor of Static Spherical Structures

论文作者

Yousaf, Z., Khlopov, Maxim Yu., Bhatti, M. Z., Naseer, T.

论文摘要

本文的目的是概括$ f(r,t,q)$引力理论中静态自我磨练结构的复杂性的定义,其中$ r $是ricci stalcor,$ t $是能量动量张量和$ q \ equiv r_ equiv r_ equiv r_ {αβ} t^{αβ{αβ} $的痕迹。在这种情况下,我们考虑了局部各向异性球形问题分布以及计算出的现场方程和保护定律。在Riemann曲率张量的正交分裂之后,我们在结构标量的帮助下发现了相应的复杂性因子。可以看出,如果能量密度不均匀性和压力各向异性的影响取消彼此的影响,则系统的复杂性因子可能为零。我们所有的结果都降低了假设$ f(r,t,q)= r $条件的总体相对论。

The aim of this paper is to generalize the definition of complexity for the static self-gravitating structure in $f(R,T,Q)$ gravitational theory, where $R$ is the Ricci scalar, $T$ is the trace part of energy momentum tensor and $Q\equiv R_{αβ}T^{αβ}$. In this context, we have considered locally anisotropic spherical matter distribution and calculated field equations and conservation laws. After the orthogonal splitting of the Riemann curvature tensor, we found the corresponding complexity factor with the help of structure scalars. It is seen that the system may have zero complexity factor if the effects of energy density inhomogeneity and pressure anisotropy cancel the effects of each other. All of our results reduce to general relativity on assuming $f(R,T,Q)=R$ condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源