论文标题

由双椭圆形问题引起的索波列夫空间中的常规功能近似

Approximation by regular functions in Sobolev spaces arising from doubly elliptic problems

论文作者

Pucci, Patrizia, Vitillaro, Enzo

论文摘要

本文处理了$ c^m(\overlineΩ)$函数的非平凡密度结果,并在{\ mathbb n} \ cup \ cup \ {\ infty \} $中,在space $ w^{k,k,\ ell,p}(e el,p)中u_ {|γ} \ in w^{\ ell,p}(γ)\ right \},$$在$(u,u _ {|γ})$的规范中,$(u,u_ {|γ})$ in $ w^{k,p}(k,p}(ω)(ω)\ times w^{\ ell,p} $ suble, r}^n $,$ n \ ge 2 $,带有$ c^m $的边界$γ$,$ k \ le \ el \ el \ le m $和$ 1 \ le p <\ infty $。 当处理涉及两个椭圆运算符的双重椭圆问题时,这一点令人感兴趣,一个$ω$,另一个在$γ$中。 此外,当$γ$的相对开放的部分施加了差异均匀的边界条件时,我们还将考虑这种情况,并且作为初步步骤,当$ω= {\ mathbb r}^n $或$ ch = {\ MathbB r}^n $或$ ch = = {\ Mathb r}^n n _+$+$ $和$ $ $ $ r r ry时,我们将证明是类似的结果。 \关键字{密度结果\和sobolev spaces \以及光滑函数\以及laplace-beltrami操作员。

The paper deals with a nontrivial density result for $C^m(\overlineΩ)$ functions, with $m\in{\mathbb N}\cup\{\infty\}$, in the space $$W^{k,\ell,p}(Ω;Γ)= \left\{u\in W^{k,p}(Ω): u_{|Γ}\in W^{\ell,p}(Γ)\right\},$$ endowed with the norm of $(u,u_{|Γ})$ in $W^{k,p}(Ω)\times W^{\ell,p}(Γ)$, where $Ω$ is a bounded open subset of ${\mathbb R}^N$, $N\ge 2$, with boundary $Γ$ of class $C^m$, $k\le \ell\le m$ and $1\le p<\infty$. Such a result is of interest when dealing with doubly elliptic problems involving two elliptic operators, one in $Ω$ and the other on $Γ$. Moreover we shall also consider the case when a Dirichlet homogeneous boundary condition is imposed on a relatively open part of $Γ$ and, as a preliminary step, we shall prove an analogous result when either $Ω={\mathbb R}^N$ or $Ω={\mathbb R}^N_+$ and $Γ=\partial{\mathbb R}^N_+$. \keywords{Density results\and Sobolev spaces \and Smooth functions \and the Laplace--Beltrami operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源