论文标题
最近的邻居网络从3D点云中提取数字地形模型
A Nearest Neighbor Network to Extract Digital Terrain Models from 3D Point Clouds
论文作者
论文摘要
当将3D点的云云用作遥感数据开发管道的输入时,大量精力用于数据准备。在预处理链的多个阶段中,估计数字地形模型(DTM)模型被认为非常重要。但是,这仍然是一个挑战,尤其是对于来自光学图像的原始点云。当前的算法使用一组需要调整多个参数和人类相互作用的几何规则来估算地面点,或者将问题作为二进制分类机器学习任务,在此发现地面和非地面类别。相比之下,在这里,我们提出了一种直接在3D点云上运行的算法,并使用端到端方法估算场景的基础DTM,而无需将点分类为地面和非地面盖类型。我们的模型学习了邻里信息,并将其与重点和块的全球功能无缝集成。我们使用ISPRS 3D语义标签比赛激光雷达数据以及使用密集的立体声匹配,高层建筑物,低层城市结构和密集的老城区住宅区生成的三个场景来验证我们的模型。我们将发现与DTM提取的两个广泛使用的软件包进行了比较,即Envi和Lastools。我们的初步结果表明,所提出的方法能够达到总体平均绝对误差11.5%,而Envi和Lastools的总体绝对误差为29%,而16%。
When 3D-point clouds from overhead sensors are used as input to remote sensing data exploitation pipelines, a large amount of effort is devoted to data preparation. Among the multiple stages of the preprocessing chain, estimating the Digital Terrain Model (DTM) model is considered to be of a high importance; however, this remains a challenge, especially for raw point clouds derived from optical imagery. Current algorithms estimate the ground points using either a set of geometrical rules that require tuning multiple parameters and human interaction, or cast the problem as a binary classification machine learning task where ground and non-ground classes are found. In contrast, here we present an algorithm that directly operates on 3D-point clouds and estimate the underlying DTM for the scene using an end-to-end approach without the need to classify points into ground and non-ground cover types. Our model learns neighborhood information and seamlessly integrates this with point-wise and block-wise global features. We validate our model using the ISPRS 3D Semantic Labeling Contest LiDAR data, as well as three scenes generated using dense stereo matching, representative of high-rise buildings, lower urban structures, and a dense old-city residential area. We compare our findings with two widely used software packages for DTM extraction, namely ENVI and LAStools. Our preliminary results show that the proposed method is able to achieve an overall Mean Absolute Error of 11.5% compared to 29% and 16% for ENVI and LAStools.