论文标题

与COSI成像511 KEV正电子歼灭天空

Imaging the 511 keV positron annihilation sky with COSI

论文作者

Siegert, Thomas, Boggs, Steven E., Tomsick, John A., Zoglauer, Andreas, Kierans, Carolyn, Sleator, Clio, Beechert, Jacqueline, Brandt, Theresa, Jean, Pierre, Lazar, Hadar, Lowell, Alex, Roberts, Jarred M., von Ballmoos, Peter

论文摘要

气球传播的康普顿光谱仪和成像仪(COSI)在2016年成功进行了46天的飞行。该乐器对能量范围的光子敏感$ 0.2 $ -5 $ 5 $ MEV。康普顿望远镜具有独特的成像响应的优势,并提供了强大的背景抑制作用的可能性。 COSI凭借其高纯锗探测器,可以精确地绘制$γ$ -Ray线排放。最强的持久性和散射$γ$ -Ray线信号是来自银河系中心方向的电子的an灭电子的511 keV发射线。尽管已经提出了许多来源来解释正义的数量,但$ \ dot {n} _ {\ mathrm {e^+}}} \ sim 10^{50} \,\ mathrm {e^+\ \,yr^,yr^,yr^{ - 1}}} $,真实的贡献仍未得到解决。在这项研究中,我们旨在使用模拟和bin的成像响应来对511 KEV天空进行成像,并采用全面的建模方法。对于强大的乐器背景,我们描述了一种考虑气球环境的经验方法。我们执行两种替代方法来描述该信号:Richardson-Lucy Deonvolution,一种迭代方法,用于最大似然解决方案,以及具有预定义的发射模板的模型拟合。一致地,我们找到了一个511 keV凸起信号,通量在$ 0.9 $至3.1 \ $ 3.1 \ times 10^{ - 3} \,\ mathrm {ph \,cm^{ - 2} \,s^{ - 1}}} $,确认的早期测量和更广泛的均值指示。我们为511 keV磁盘找到的上限,$ <4.3 \ times 10^{ - 3} \,\ mathrm {ph \,cm^{ - 2} \,s^{ - 1}} $,与先前的检测一致。对于具有较弱梯度的大规模发射,编码的光圈掩模仪器无法将各向同性发射与仪器背景区分开,而compton-telescopes则提供了明确的成像响应,与真实发射无关。

The balloon-borne Compton Spectrometer and Imager (COSI) had a successful 46-day flight in 2016. The instrument is sensitive to photons in the energy range $0.2$-$5$ MeV. Compton telescopes have the advantage of a unique imaging response and provide the possibility of strong background suppression. With its high-purity germanium detectors, COSI can precisely map $γ$-ray line emission. The strongest persistent and diffuse $γ$-ray line signal is the 511 keV emission line from the annihilation of electrons with positrons from the direction of the Galactic centre. While many sources have been proposed to explain the amount of positrons, $\dot{N}_{\mathrm{e^+}} \sim 10^{50}\,\mathrm{e^+\,yr^{-1}}$, the true contributions remain unsolved. In this study, we aim at imaging the 511 keV sky with COSI and pursue a full-forward modelling approach, using a simulated and binned imaging response. For the strong instrumental background, we describe an empirical approach to take the balloon environment into account. We perform two alternative methods to describe the signal: Richardson-Lucy deconvolution, an iterative method towards the maximum likelihood solution, and model fitting with pre-defined emission templates. Consistently with both methods, we find a 511 keV bulge signal with a flux between $0.9$ and $3.1 \times 10^{-3}\,\mathrm{ph\,cm^{-2}\,s^{-1}}$, confirming earlier measurements, and also indications of more extended emission. The upper limit we find for the 511 keV disk, $< 4.3 \times 10^{-3}\,\mathrm{ph\,cm^{-2}\,s^{-1}}$, is consistent with previous detections. For large-scale emission with weak gradients, coded aperture mask instruments suffer from their inability to distinguish isotropic emission from instrumental background, while Compton-telescopes provide a clear imaging response, independent of the true emission.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源