论文标题

使用模型来改善各种量子算法的优化器

Using models to improve optimizers for variational quantum algorithms

论文作者

Sung, Kevin J., Yao, Jiahao, Harrigan, Matthew P., Rubin, Nicholas C., Jiang, Zhang, Lin, Lin, Babbush, Ryan, McClean, Jarrod R.

论文摘要

变异量子算法是嘈杂的中间量子计算机早期应用的主要候选者。这些算法取决于经典优化外环,该外环将参数化量子电路的某些功能最小化。实际上,有限的采样误差和门错误使其成为随机优化,其独特的挑战必须在优化器的级别上解决。精确度和采样时间之间的急剧权衡以及实验约束的结合需要开发新的优化策略,以最大程度地减少在这种情况下的整体壁时钟时间。在这项工作中,我们介绍了两种优化方法,并将其性能与当今使用的常见方法进行比较。这些方法是基于替代模型的算法,旨在改善收集数据的重复使用。他们通过利用最小二乘在移动的受信任区域内采样函数值的二次拟合来估计梯度或策略梯度。为了在优化方法之间进行公平的比较,我们开发了与云量子计算系统相关的实验相关成本模型,旨在平衡测试和准确性的效率。这里的结果强调了使用相关的成本模型并优化现有优化方法的超参数以进行竞争性能。此处介绍的方法在现实的实验设置中具有几个实用的优势,并且我们在Google的Sycamore设备上单独发布的实验中成功使用了其中一种。

Variational quantum algorithms are a leading candidate for early applications on noisy intermediate-scale quantum computers. These algorithms depend on a classical optimization outer-loop that minimizes some function of a parameterized quantum circuit. In practice, finite sampling error and gate errors make this a stochastic optimization with unique challenges that must be addressed at the level of the optimizer. The sharp trade-off between precision and sampling time in conjunction with experimental constraints necessitates the development of new optimization strategies to minimize overall wall clock time in this setting. In this work, we introduce two optimization methods and numerically compare their performance with common methods in use today. The methods are surrogate model-based algorithms designed to improve reuse of collected data. They do so by utilizing a least-squares quadratic fit of sampled function values within a moving trusted region to estimate the gradient or a policy gradient. To make fair comparisons between optimization methods, we develop experimentally relevant cost models designed to balance efficiency in testing and accuracy with respect to cloud quantum computing systems. The results here underscore the need to both use relevant cost models and optimize hyperparameters of existing optimization methods for competitive performance. The methods introduced here have several practical advantages in realistic experimental settings, and we have used one of them successfully in a separately published experiment on Google's Sycamore device.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源